Do you want to publish a course? Click here

OLR 2021 Challenge: Datasets, Rules and Baselines

280   0   0.0 ( 0 )
 Added by Wenxuan Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper introduces the sixth Oriental Language Recognition (OLR) 2021 Challenge, which intends to improve the performance of language recognition systems and speech recognition systems within multilingual scenarios. The data profile, four tasks, two baselines, and the evaluation principles are introduced in this paper. In addition to the Language Identification (LID) tasks, multilingual Automatic Speech Recognition (ASR) tasks are introduced to OLR 2021 Challenge for the first time. The challenge this year focuses on more practical and challenging problems, with four tasks: (1) constrained LID, (2) unconstrained LID, (3) constrained multilingual ASR, (4) unconstrained multilingual ASR. Baselines for LID tasks and multilingual ASR tasks are provided, respectively. The LID baseline system is an extended TDNN x-vector model constructed with Pytorch. A transformer-based end-to-end model is provided as the multilingual ASR baseline system. These recipes will be online published, and available for participants to construct their own LID or ASR systems. The baseline results demonstrate that those tasks are rather challenging and deserve more effort to achieve better performance.



rate research

Read More

364 - Fan Yu , Zhuoyuan Yao , Xiong Wang 2020
Automatic speech recognition (ASR) has been significantly advanced with the use of deep learning and big data. However improving robustness, including achieving equally good performance on diverse speakers and accents, is still a challenging problem. In particular, the performance of children speech recognition (CSR) still lags behind due to 1) the speech and language characteristics of childrens voice are substantially different from those of adults and 2) sizable open dataset for children speech is still not available in the research community. To address these problems, we launch the Children Speech Recognition Challenge (CSRC), as a flagship satellite event of IEEE SLT 2021 workshop. The challenge will release about 400 hours of Mandarin speech data for registered teams and set up two challenge tracks and provide a common testbed to benchmark the CSR performance. In this paper, we introduce the datasets, rules, evaluation method as well as baselines.
The IEEE Spoken Language Technology Workshop (SLT) 2021 Alpha-mini Speech Challenge (ASC) is intended to improve research on keyword spotting (KWS) and sound source location (SSL) on humanoid robots. Many publications report significant improvements in deep learning based KWS and SSL on open source datasets in recent years. For deep learning model training, it is necessary to expand the data coverage to improve the robustness of model. Thus, simulating multi-channel noisy and reverberant data from single-channel speech, noise, echo and room impulsive response (RIR) is widely adopted. However, this approach may generate mismatch between simulated data and recorded data in real application scenarios, especially echo data. In this challenge, we open source a sizable speech, keyword, echo and noise corpus for promoting data-driven methods, particularly deep-learning approaches on KWS and SSL. We also choose Alpha-mini, a humanoid robot produced by UBTECH equipped with a built-in four-microphone array on its head, to record development and evaluation sets under the actual Alpha-mini robot application scenario, including noise as well as echo and mechanical noise generated by the robot itself for model evaluation. Furthermore, we illustrate the rules, evaluation methods and baselines for researchers to quickly assess their achievements and optimize their models.
We present the visually-grounded language modelling track that was introduced in the Zero-Resource Speech challenge, 2021 edition, 2nd round. We motivate the new track and discuss participation rules in detail. We also present the two baseline systems that were developed for this track.
The INTERSPEECH 2020 Deep Noise Suppression (DNS) Challenge is intended to promote collaborative research in real-time single-channel Speech Enhancement aimed to maximize the subjective (perceptual) quality of the enhanced speech. A typical approach to evaluate the noise suppression methods is to use objective metrics on the test set obtained by splitting the original dataset. While the performance is good on the synthetic test set, often the model performance degrades significantly on real recordings. Also, most of the conventional objective metrics do not correlate well with subjective tests and lab subjective tests are not scalable for a large test set. In this challenge, we open-sourced a large clean speech and noise corpus for training the noise suppression models and a representative test set to real-world scenarios consisting of both synthetic and real recordings. We also open-sourced an online subjective test framework based on ITU-T P.808 for researchers to reliably test their developments. We evaluated the results using P.808 on a blind test set. The results and the key learnings from the challenge are discussed. The datasets and scripts can be found here for quick access https://github.com/microsoft/DNS-Challenge.
156 - Xian Shi , Fan Yu , Yizhou Lu 2021
The variety of accents has posed a big challenge to speech recognition. The Accented English Speech Recognition Challenge (AESRC2020) is designed for providing a common testbed and promoting accent-related research. Two tracks are set in the challenge -- English accent recognition (track 1) and accented English speech recognition (track 2). A set of 160 hours of accented English speech collected from 8 countries is released with labels as the training set. Another 20 hours of speech without labels is later released as the test set, including two unseen accents from another two countries used to test the model generalization ability in track 2. We also provide baseline systems for the participants. This paper first reviews the released dataset, track setups, baselines and then summarizes the challenge results and major techniques used in the submissions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا