Do you want to publish a course? Click here

Bimonoidal Categories, $E_n$-Monoidal Categories, and Algebraic $K$-Theory

255   0   0.0 ( 0 )
 Added by Niles Johnson
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questions of bimonoidal categories in mathematics and other sciences. This work provides a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user friendly resource for beginners and experts alike.



rate research

Read More

Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations. In this paper, we extend existing coherence theorems to the setting of indexed symmetric monoidal categories. The most central theorem states that a large family of operations on a bicategory defined from an indexed symmetric monoidal category are all canonically isomorphic. As a part of this theorem, we introduce a rigorous graphical calculus that specifies when two such operations admit a canonical isomorphism.
We use Luries symmetric monoidal envelope functor to give two new descriptions of $infty$-operads: as certain symmetric monoidal $infty$-categories whose underlying symmetric monoidal $infty$-groupoids are free, and as certain symmetric monoidal $infty$-categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of $infty$-operads, as a localization of a presheaf $infty$-category, and we use this to give a simple proof of the equivalence between Luries and Barwicks models for $infty$-operads.
195 - John D. Berman 2020
This is the first of a series of papers on enriched infinity categories, seeking to reduce enriched higher category theory to the higher algebra of presentable infinity categories, which is better understood and can be approached via universal properties. In this paper, we introduce enriched presheaves on an enriched infinity category. We prove analogues of most familiar properties of presheaves. For example, we compute limits and colimits of presheaves, prove that all presheaves are colimits of representable presheaves, and prove a version of the Yoneda lemma.
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is an operation of restriction to an idempotent subunit: it is a graded monad on the category, and has the universal property of algebraic localisation. Spacetime structure on the base space induces a closure operator on the idempotent subunits. Restriction is then interpreted as spacetime propagation. This lets us study relativistic quantum information theory using methods entirely internal to monoidal categories. As a proof of concept, we show that quantum teleportation is only successfully supported on the intersection of Alice and Bobs causal future.
We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalizing the one introduced by Squier for word rewriting systems. We characterize this property by using the notion of critical branching. In particular, we define sufficient conditions for an n-category to have finite derivation type. Through examples, we present several techniques based on derivations of 2-categories to study convergent presentations by 3-polygraphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا