Do you want to publish a course? Click here

Patterns of Patterns

46   0   0.0 ( 0 )
 Added by Joseph Corneli
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The purpose of this paper is to show how we can combine and adapt methods from elite training, future studies, and collaborative design, and apply them to address significant problems in social networks. We focus on three such methods: we use Action Reviews to implement social perception, Causal Layered Analysis to implement social cognition, and Design Pattern Languages to implement social action. To illustrate the methods in combination, we first develop a case study, showing how we applied them to bootstrap a distributed cross-disciplinary research seminar. We then use Causal Layered Analysis to explore the ways in which the design pattern discourse has been evolving. Building on these analyses, we elaborate several scenarios for the future use of design patterns in large-scale distributed collaboration. We conclude that the combination of methods is robust to uncertainty -- by supporting adaptations as circumstances change -- and that they can help people coming from different backgrounds work together. In particular, we show how methods drawn from other domains enrich and are enriched by design patterns; we believe the analysis will be of interest to all of the communities whose methods we draw upon.



rate research

Read More

The research objectives are exploring characteristics of human mobility patterns, subsequently modelling them mathematically depending on inter-event time and traveled distances parameters using CDRs (Call Detailed Records). The observations are obtained from Armada festival in France. Understanding, modelling and simulating human mobility among urban regions is excitement approach, due to itsimportance in rescue situations for various events either indoor events like evacuation of buildings or outdoor ones like public assemblies,community evacuation in casesemerged during emergency situations, moreover serves urban planning and smart cities.
Networks are at the core of modeling many engineering contexts, mainly in the case of infrastructures and communication systems. The resilience of a network, which is the property of the system capable of absorbing external shocks, is then of paramount relevance in the applications. This paper deals with this topic by advancing a theoretical proposal for measuring the resilience of a network. The proposal is based on the study of the shocks propagation along the patterns of connections among nodes. The theoretical model is tested on the real-world instances of two important airport systems in the US air traffic network; Illinois (including the hub of Chicago) and New York states (with JFK airport).
How can we model influence between individuals in a social system, even when the network of interactions is unknown? In this article, we review the literature on the influence model, which utilizes independent time series to estimate how much the state of one actor affects the state of another actor in the system. We extend this model to incorporate dynamical parameters that allow us to infer how influence changes over time, and we provide three examples of how this model can be applied to simulated and real data. The results show that the model can recover known estimates of influence, it generates results that are consistent with other measures of social networks, and it allows us to uncover important shifts in the way states may be transmitted between actors at different points in time.
163 - Bo Yang , Jiming Liu 2010
Complex network theory aims to model and analyze complex systems that consist of multiple and interdependent components. Among all studies on complex networks, topological structure analysis is of the most fundamental importance, as it represents a natural route to understand the dynamics, as well as to synthesize or optimize the functions, of networks. A broad spectrum of network structural patterns have been respectively reported in the past decade, such as communities, multipartites, hubs, authorities, outliers, bow ties, and others. Here, we show that most individual real-world networks demonstrate multiplex structures. That is, a multitude of known or even unknown (hidden) patterns can simultaneously situate in the same network, and moreover they may be overlapped and nested with each other to collaboratively form a heterogeneous, nested or hierarchical organization, in which different connective phenomena can be observed at different granular levels. In addition, we show that the multiplex structures hidden in exploratory networks can be well defined as well as effectively recognized within an unified framework consisting of a set of proposed concepts, models, and algorithms. Our findings provide a strong evidence that most real-world complex systems are driven by a combination of heterogeneous mechanisms that may collaboratively shape their ubiquitous multiplex structures as we observe currently. This work also contributes a mathematical tool for analyzing different sources of networks from a new perspective of unveiling multiplex structures, which will be beneficial to multiple disciplines including sociology, economics and computer science.
Graphs have been utilized as a powerful tool to model pairwise relationships between people or objects. Such structure is a special type of a broader concept referred to as hypergraph, in which each hyperedge may consist of an arbitrary number of nodes, rather than just two. A large number of real-world datasets are of this form - for example, list of recipients of emails sent from an organization, users participating in a discussion thread or subject labels tagged in an online question. However, due to complex representations and lack of adequate tools, little attention has been paid to exploring the underlying patterns in these interactions. In this work, we empirically study a number of real-world hypergraph datasets across various domains. In order to enable thorough investigations, we introduce the multi-level decomposition method, which represents each hypergraph by a set of pairwise graphs. Each pairwise graph, which we refer to as a k-level decomposed graph, captures the interactions between pairs of subsets of k nodes. We empirically find that at each decomposition level, the investigated hypergraphs obey five structural properties. These properties serve as criteria for evaluating how realistic a hypergraph is, and establish a foundation for the hypergraph generation problem. We also propose a hypergraph generator that is remarkably simple but capable of fulfilling these evaluation metrics, which are hardly achieved by other baseline generator models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا