We study the nonequilibrium steady states in asymmetric exclusion processes (TASEP) with open boundary conditions having spatially inhomogeneous hopping rates. Assuming spatially smoothly varying hopping rates with a few (or no) discontinuities, we show that the steady states are in general classified by the steady state currents in direct analogy with open TASEPs having uniform hopping rates. We calculate the steady state density profiles, which are now space-dependent. We also obtain the phase diagrams in the plane of the control parameters, which though have phase boundaries that are in general curved lines, have the same topology as their counterparts for conventional open TASEPs, independent of the form of the hopping rate functions. This reveals a type of universality, not encountered in critical phenomena.