Communication Lower Bounds for Nested Bilinear Algorithms


Abstract in English

We develop lower bounds on communication in the memory hierarchy or between processors for nested bilinear algorithms, such as Strassens algorithm for matrix multiplication. We build on a previous framework that establishes communication lower bounds by use of the rank expansion, or the minimum rank of any fixed size subset of columns of a matrix, for each of the three matrices encoding the bilinear algorithm. This framework provides lower bounds for any way of computing a bilinear algorithm, which encompasses a larger space of algorithms than by fixing a particular dependency graph. Nested bilinear algorithms include fast recursive algorithms for convolution, matrix multiplication, and contraction of tensors with symmetry. Two bilinear algorithms can be nested by taking Kronecker products between their encoding matrices. Our main result is a lower bound on the rank expansion of a matrix constructed by a Kronecker product derived from lower bounds on the rank expansion of the Kronecker products operands. To prove this bound, we map a subset of columns from a submatrix to a 2D grid, collapse them into a dense grid, expand the grid, and use the size of the expanded grid to bound the number of linearly independent columns of the submatrix. We apply the rank expansion lower bounds to obtain novel communication lower bounds for nested Toom-Cook convolution, Strassens algorithm, and fast algorithms for partially symmetric contractions.

Download