Do you want to publish a course? Click here

Enhanced Thermal Transport across the Interface between Charged Graphene Electrodes and Poly(ethylene oxide) Electrolytes by Non-covalent Functionalization

117   0   0.0 ( 0 )
 Added by Siyu Tian
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interfacial thermal transport between electrodes and polymer electrolytes can play a crucial role in the thermal management of solid-state lithium-ion batteries (SLIBs). Modifying the electrode surface with functional molecules can effectively increase the interfacial thermal conductance (ITC) between electrodes and polymers (e.g., electrolytes, separators); however, how they influence the interfacial thermal transport in SLIBs during charge/discharge remains unknown. In this work, we conduct molecular dynamics (MD) simulations to investigate the ITC between charged electrodes and solid-state polymer electrolytes (SPEs) mixed with ionic liquids (ILs). We find that ILs could self assemble at the electrode surface and act as non-covalent functional molecules that could significantly enhance the interfacial thermal transport during charge/discharge because of the formation of a densely packed cationic or anionic layer at the interface. While the electrostatic interactions between the charged electrode and the IL ions are responsible for forming these dense interfacial layers, the enhancement of ITC is mainly contributed by the increased Lennard-Jones (LJ) interactions between the charged electrodes and ILs. This work may provide useful insights into the understanding of interfacial thermal transport between electrodes and electrolytes of SLIBs during charge/discharge.



rate research

Read More

Based on a low temperature scanning tunneling microscopy study, we present a direct visualization of a cycloaddition reaction performed for some specific fluorinated maleimide molecules deposited on graphene. These studies showed that the cycloaddition reactions can be carried out on the basal plane of graphene, even when there are no pre-existing defects. In the course of covalently grafting the molecules to graphene, the sp2 conjugation of carbon atoms was broken and local sp3 bonds were created. The grafted molecules perturbed the graphene lattice, generating a standing-wave pattern with an anisotropy which was attributed to a (1,2) cycloaddition, as revealed by T-matrix approximation calculations. DFT calculations showed that while both (1,4) and (1,2) cycloaddition were possible on free standing graphene, only the (1,2) cycloaddition could be obtained for graphene on SiC(0001). Globally averaging spectroscopic techniques, XPS and ARPES, were used to determine the modification in the elemental composition of the samples induced by the reaction, indicating an opening of an electronic gap in graphene.
In a number of current experiments in the field of spin-caloritronics a temperature gradient across a nanostructured interface is applied and spin-dependent transport phenomena are observed. However, a lack in the interpretation and knowledge let it unclear how the temperature drop across a magnetic nanostructured interface looks like where both phonons and electrons may contribute to thermal transport. We answer this question for the case of a magnetic tunnel junction (MTJ) where the tunneling magneto Seebeck effect occurs. Nevertheless, our results can be extended to other nanostructured interfaces as well. Using an textit{ab initio} method we explicitly calculate phonon and electron thermal conductance across the Fe/MgO/Fe-MTJs by using Greens function method. Further, by estimating the electron-phonon interaction in the Fe leads we are able to calculate the electron and phonon temperature profile across the Fe/MgO/Fe-MTJ. Our results show that there is an electron-phonon temperature imbalance at the Fe-MgO interfaces. In consequence, a revision of the interpretation of current experimental measurements might be necessary.
Step junctions are often present in layered materials, i.e. where single-layer regions meet multi-layer regions, yet their effect on thermal transport is not understood to date. Here, we measure heat flow across graphene junctions (GJs) from monolayer to bilayer graphene, as well as bilayer to four-layer graphene for the first time, in both heat flow directions. The thermal conductance of the monolayer-bilayer GJ device ranges from ~0.5 to 9.1x10^8 Wm-2K-1 between 50 K to 300 K. Atomistic simulations of such GJ device reveal that graphene layers are relatively decoupled, and the low thermal conductance of the device is determined by the resistance between the two dis-tinct graphene layers. In these conditions the junction plays a negligible effect. To prove that the decoupling between layers controls thermal transport in the junction, the heat flow in both directions was measured, showing no evidence of thermal asymmetry or rectification (within experimental error bars). For large-area graphene applications, this signifies that small bilayer (or multilayer) islands have little or no contribution to overall thermal transport.
Layering two-dimensional van der Waals materials provides unprecedented control over atomic placement, which could enable tailoring of vibrational spectra and heat flow at the sub-nanometer scale. Here, using spatially-resolved ultrafast thermoreflectance and spectroscopy, we uncover the design rules governing cross-plane heat transport in superlattices assembled from monolayers of graphene (G) and MoS2 (M). Using a combinatorial experimental approach, we probe nine different stacking sequences: G, GG, MG, GGG, GMG, GGMG, GMGG, GMMG, GMGMG and identify the effects of vibrational mismatch, interlayer adhesion, and junction asymmetry on thermal transport. Pure G sequences display signatures of quasi-ballistic transport, whereas adding even a single M layer strongly disrupts heat conduction. The experimental data are described well by molecular dynamics simulations which include thermal expansion, accounting for the effect of finite temperature on the interlayer spacing. The simulations show that a change of only 1.5% in the layer separation can lead to a nearly 100% increase of the thermal resistance. Using these design rules, we experimentally demonstrate a 5-layer GMGMG superlattice with an ultralow effective cross-plane thermal conductivity comparable to air, paving the way for a new class of thermal metamaterials with extreme properties.
Solid-state lithium-ion batteries (SSLIBs) are considered to be the new generation of devices for energy storage due to better performance and safety. Poly (ethylene oxide) (PEO) based material becomes one of the best candidate of solid electrolytes, while its thermal conductivity is crucial to heat dissipation inside batteries. In this work, we study the thermal conductivity of PEO by molecular dynamics simulation. By enhancing the structure order, thermal conductivity of aligned crystalline PEO is obtained as high as 60 W/m-K at room temperature, which is two orders higher than the value (0.37 W/m-K) of amorphous structure. Interestingly, thermal conductivity of ordered structure shows a significant stepwise negative temperature dependence, which is attributed to the temperature-induced morphology change. Our study offers useful insights into the fundamental mechanisms that govern the thermal conductivity of PEO but not hinder the ionic transport, which can be used for the thermal management and further optimization of high-performance SSLIBs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا