Effect of small noise on the speed of reaction-diffusion equations with non-Lipschitz drift


Abstract in English

We consider the $[0,1]$-valued solution $(u_{t,x}:tgeq 0, xin mathbb R)$ to the one dimensional stochastic reaction diffusion equation with Wright-Fisher noise [ partial_t u = partial_x^2 u + f(u) + epsilon sqrt{u(1-u)} dot W. ] Here, $W$ is a space-time white noise, $epsilon > 0$ is the noise strength, and $f$ is a continuous function on $[0,1]$ satisfying $sup_{zin [0,1]}|f(z)|/ sqrt{z(1-z)} < infty.$ We assume the initial data satisfies $1 - u_{0,-x} = u_{0,x} = 0$ for $x$ large enough. Recently, it was proved in (Comm. Math. Phys. 384 (2021), no. 2) that the front of $u_t$ propagates with a finite deterministic speed $V_{f,epsilon}$, and under slightly stronger conditions on $f$, the asymptotic behavior of $V_{f,epsilon}$ was derived as the noise strength $epsilon$ approaches $infty$. In this paper we complement the above result by obtaining the asymptotic behavior of $V_{f,epsilon}$ as the noise strength $epsilon$ approaches $0$: for a given $pin [1/2,1)$, if $f(z)$ is non-negative and is comparable to $z^p$ for sufficiently small $z$, then $V_{f,epsilon}$ is comparable to $epsilon^{-2frac{1-p}{1+p}}$ for sufficiently small $epsilon$.

Download