No Arabic abstract
In this paper we have successfully established (from first principles) that anyons do live in a 2-dimensional {it{noncommutative}} space. We have directly computed the non-trivial uncertainty relation between anyon coordinates, ${sqrt{Delta x^2Delta y^2}}=Thetasigma$, using the recently constructed anyon wave function [J. Majhi, S. Ghosh and S.K. Maiti, Phys. Rev. Lett. textbf{123}, 164801 (2019)] cite{jan}, in the framework of I. Bialynicki-Birula and Z. Bialynicka-Birula, New J. Phys. textbf{21}, 07306 (2019) cite{bel}. Furthermore we also compute the Heisenberg uncertainty relation for anyon and as a consistency check, show that the results of cite{bel} prove that, as expected, electrons live in 3-dimensional commutative space.
Some aspects of the exotic particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models are also discussed. Minimal as well as anomalous coupling to an external electromagnetic field is presented. Supersymmetric extension is also considered. Exotic Galilean symmetry is also found in Moyal field theory. Similar equations arise for a semiclassical Bloch electron, used to explain the anomalous/spin/optical Hall effects.
The Moyal *-deformed noncommutative version of Burgers equation is considered. Using the *-analog of the Cole-Hopf transformation, the linearization of the model in terms of the linear heat equation is found. Noncommutative q-deformations of shock soliton solutions and their interaction are described
In this paper, we calculate the norm of the string Fourier transform on subfactor planar algebras and characterize the extremizers of the inequalities for parameters $0<p,qleq infty$. Furthermore, we establish R{e}nyi entropic uncertainty principles for subfactor planar algebras.
We show that it is in principle possible to construct dualities between commutative and non-commutative theories in a systematic way. This construction exploits a generalization of the exact renormalization group equation (ERG). We apply this to the simple case of the Landau problem and then generalize it to the free and interacting non-canonical scalar field theory. This constructive approach offers the advantage of tracking the implementation of the Lorentz symmetry in the non-commutative dual theory. In principle, it allows for the construction of completely consistent non-commutative and non-local theories where the Lorentz symmetry and unitarity are still respected, but may be implemented in a highly non-trivial and non-local manner.
We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $theta$. Our main focus will be on the collective excitations of the dense matter in the presence of an external magnetic field. Constraining the defect field theory to 2+1 dimensions, we will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic fluid. We will deduce the universal properties of holographic matter and find that the Einstein relation always holds.