No Arabic abstract
We perform a detailed characterization of the planetary system orbiting the bright, nearby M dwarf Gliese 411 using radial velocities gathered by APF, HIRES, SOPHIE, and CARMENES. We confirm the presence of a signal with a period near $2900$ days that has been disputed as either a planet or long-period stellar magnetic cycle. An analysis of activity metrics including $mathrm{H_alpha}$ and $mathrm{logR_{HK}}$ indices supports the interpretation that the signal corresponds to a Neptune-mass planet, GJ 411 c. An additional signal near $215$ days was previously dismissed as an instrumental systematic, but our analysis shows that a planetary origin cannot be ruled out. With a semi-major axis of $0.5141pm0.0038$ AU, this candidates orbit falls between those of its companions and skirts the outer edge of the habitable zone. It has a minimum mass of $4.1pm0.6$ $M_oplus$, giving a radial velocity amplitude of $0.83pm0.12$ $mathrm{m,s^{-1}}$. If confirmed, this would be one of the lowest-amplitude planet detections from any of these four instruments. Our analysis of the joint radial velocity data set also provides tighter constraints on the orbital parameters for the previously known planets. Photometric data from $it{TESS}$ does not show any signs of a transit event. However, the outermost planet and candidate are prime targets for future direct imaging missions and GJ 411 c may be detectable via astrometry.
A 4MJ planet with a 15.8day orbital period has been detected from very precise radial velocity measurements with the CORALIE echelle spectrograph. A second remote and more massive companion has also been detected. All the planetary companions so far detected in orbit closer than 0.08 AU have a parent star with a statistically higher metal content compared to the metallicity distribution of other stars with planets. Different processes occuring during their formation may provide a possible explanation for this observation.
We re-analyse the recently published HARPS and PFS velocities of the nearby K dwarf GJ 221 that have been reported to contain the signatures of two planets orbiting the star. Our goal is to see whether the earlier studies discussing the system fell victims of false negative detections. We perform the analyses by using an independent statistical method based on posterior samplings and model comparisons in the Bayesian framework that is known to be more sensitive to weak signals of low-mass planets. According to our analyses, we find strong evidence in favour of a third candidate planet in the system corresponding to a cold sub-Saturnian planet with an orbital period of 500 days and a minimum mass of 29 $M_{oplus}$. Application of sub-optimal signal detection methods can leave low-amplitude signals undetected in radial velocity time-series. Our results suggest that the estimated statistical properties of low-mass planets can thus be biased because several signals corresponding to low-mass candidate planets may have gone unnoticed. This also suggests that the occurrence rates of such planets based on radial velocity surveys might be underestimated.
We report detections of new exoplanets from a radial velocity (RV) survey of metal-rich FGK stars by using three telescopes. By optimizing our RV analysis method to long time-baseline observations, we have succeeded in detecting five new Jovian-planets around three metal-rich stars HD 1605, HD 1666, and HD 67087 with the masses of $1.3 M_{odot}$, $1.5 M_{odot}$, and $1.4 M_{odot}$, respectively. A K1 subgiant star HD 1605 hosts two planetary companions with the minimum masses of $ M_p sin i = 0.96 M_{mathrm{JUP}}$ and $3.5 M_{mathrm{JUP}}$ in circular orbits with the planets periods $P = 577.9$ days and $2111$ days, respectively. HD 1605 shows a significant linear trend in RVs. Such a system consisting of Jovian planets in circular orbits has rarely been found and thus HD 1605 should be an important example of a multi-planetary system that is likely unperturbed by planet-planet interactions. HD 1666 is a F7 main sequence star which hosts an eccentric and massive planet of $ M_p sin i = 6.4 M_{mathrm{JUP}}$ in the orbit with $a_{rm p} = 0.94$ AU and an eccentricity $e=0.63$. Such an eccentric and massive planet can be explained as a result of planet-planet interactions among Jovian planets. While we have found the large residuals of $mathrm{rms} = 35.6 mathrm{m s^{-1}}$, the periodogram analysis does not support any additional periodicities. Finally, HD 67087 hosts two planets of $ M_p sin i = 3.1 M_{mathrm{JUP}}$ and $4.9 M_{mathrm{JUP}}$ in orbits with $P=352.2$ days and $2374$ days, and $e=0.17$ and $0.76$, respectively. Although the current RVs do not lead to accurate determinations of its orbit and mass, HD 67087 c can be one of the most eccentric planets ever discovered in multiple systems.
We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a $1 M_{rm Jup}$ planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a $2 M_{rm Jup}$ planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period $> 5$ yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.
The coherent low-frequency radio emission detected by LOFAR from Gliese 1151, a quiescent M4.5 dwarf star, has radio emission properties consistent with theoretical expectations of star-planet interactions for an Earth-sized planet on a 1-5 day orbit. New near-infrared radial velocities from the Habitable-zone Planet Finder (HPF) spectrometer on the 10m Hobby-Eberly Telescope at McDonald Observatory, combined with previous velocities from HARPS-N, reveal a periodic Doppler signature consistent with an $msin i = 2.5 pm 0.5 M_oplus$ exoplanet on a 2.02-day orbit. Precise photometry from the Transiting Exoplanet Survey Satellite (TESS) shows no flares or activity signature, consistent with a quiescent M dwarf. While no planetary transit is detected in the TESS data, a weak photometric modulation is detectable in the photometry at a $sim2$ day period. This independent detection of a candidate planet signal with the Doppler radial-velocity technique adds further weight to the claim of the first detection of star-exoplanet interactions at radio wavelengths, and helps validate this emerging technique for the detection of exoplanets.