Odd-parity stability of black holes in Einstein-Aether gravity


Abstract in English

In Einstein-Aether theory, we study the stability of black holes against odd-parity perturbations on a spherically symmetric and static background. For odd-parity modes, there are two dynamical degrees of freedom arising from the tensor gravitational sector and Aether vector field. We derive general conditions under which neither ghosts nor Laplacian instabilities are present for these dynamical fields. We apply these results to concrete black hole solutions known in the literature and show that some of those solutions can be excluded by the violation of stability conditions. The exact Schwarzschild solution present for $c_{13} = c_{14} = 0$, where $c_i$s are the four coupling constants of the theory with $c_{ij}=c_i + c_j$, is prone to Laplacian instabilities along the angular direction throughout the horizon exterior. However, we find that the odd-parity instability of high radial and angular momentum modes is absent for black hole solutions with $c_{13} = c_4 = 0$ and $c_1 geq 0$.

Download