Nonparametric Statistical Inference via Metric Distribution Function in Metric Spaces


Abstract in English

Distribution function is essential in statistical inference, and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradigm for statistical inference. However, existing distribution functions are defined in Euclidean spaces and no longer convenient to use in rapidly evolving data objects of complex nature. It is imperative to develop the concept of distribution function in a more general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the distribution function in a Euclidean space, but without the linearity in a metric space, we must work with the metric to investigate the probability measure. We introduce a class of metric distribution functions through the metric between random objects and a fixed location in metric spaces. We overcome this challenging step by proving the correspondence theorem and the Glivenko-Cantelli theorem for metric distribution functions in metric spaces that lie the foundation for conducting rational statistical inference for metric space-valued data. Then, we develop homogeneity test and mutual independence test for non-Euclidean random objects, and present comprehensive empirical evidence to support the performance of our proposed methods.

Download