In this paper, we study the decay rates for the global small smooth solutions to 3D anisotropic incompressible Navier-Stokes equations. In particular, we prove that the horizontal components of the velocity field decay like the solutions of 2D classical Navier-Stokes equations. While the third component of the velocity field decays as the solutions of 3D Navier-Stokes equations. We remark that such enhanced decay rate for the third component is caused by the interplay between the divergence free condition of the velocity field and the horizontal Laplacian in the anisotropic Navier-Stokes equations.