Do you want to publish a course? Click here

The Detection of Ionized Carbon Emission at z~8

64   0   0.0 ( 0 )
 Added by Michael Topping
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep Keck/MOSFIRE $H$-band spectroscopic observations covering the [CIII],CIII]$lambdalambda1907,1909$ doublet for three $zsim8$ galaxy candidates in the AEGIS field. Along with non-detections in two galaxies, we obtain one of the highest-redshift detections to-date of [CIII]$lambda 1907$ for the galaxy AEGIS-33376, finding $z_{rm spec}=7.945pm0.001$. We measure a [CIII]$lambda$1907 flux of $2.24pm0.71times10^{-18} mbox{ erg}mbox{ s}^{-1} mbox{ cm}^{-2}$, corresponding to a rest-frame equivalent width of $20.3pm6.5 unicode{x212B}$ for the single line. Given the not very constraining upper limit for CIII]$lambda 1909$ based on strong sky-line contamination, we assume a [CIII]$lambda$1907/CIII]$lambda 1909$ doublet ratio of 1.5 and infer a total [CIII],CIII]$lambdalambda1907,1909$ equivalent width of $33.7pm 10.8 unicode{x212B}$. We repeat the same reductions and analysis on multiple subsets of our raw data divided on the basis of time and observing conditions, verifying that the [CIII]$lambda 1907$ emission is present for AEGIS-33376 throughout our observations. We also confirm that the significance of the [CIII]$lambda 1907$ detection in different subsets of our data tracks that of brighter emission features detected on the same multi-slit mask. These multiple tests suggest that the observed emission line is real and associated with the $zsim 8$ target. The strong observed [CIII],CIII]$lambdalambda1907,1909$ in AEGIS-33376 likely indicates ISM conditions of low metallicity, high ionization parameter, and a hard ionizing spectrum, although AGN contributions are possible. This single detection represents a sizable increase in the current sample [CIII],CIII]$lambdalambda1907,1909$ detections at $z>7$, while $textit{JWST}$ will provide the first statistical samples of such measurements at these redshifts.



rate research

Read More

The scatter in the relationship between the strength of [CII] 158$mu$m emission and the star formation rate at high-redshift has been the source of much recent interest. Although the relationship is well-established locally, several intensely star-forming galaxies have been found whose [CII] 158$mu$m emission is either weak, absent or spatially offset from the young stars. Here we present new ALMA data for the two most distant, gravitationally-lensed and spectroscopically-confirmed galaxies, A2744_YD4 at $z=$8.38 and MACS1149_JD1 at $z=$9.11, both of which reveal intense [OIII] 88$mu$m emission. In both cases we provide stringent upper limits on the presence of [CII] 158$mu$m with respect to [OIII] 88$mu$m. We review possible explanations for this apparent redshift-dependent [CII] deficit in the context of our recent hydrodynamical simulations. Our results highlight the importance of using several emission line diagnostics with ALMA to investigate the nature of the interstellar medium in early galaxies.
The Slug Nebula is one of the largest and most luminous Lyman-alpha (LyA) nebulae discovered to date, extending over 450 kiloparsecs (kpc) around the bright quasar UM287 at z=2.283. Characterized by high surface brightnesses over intergalactic scales, its LyA emission may either trace high-density ionized gas (clumps) or large column densities of neutral material. To distinguish between these two possibilities, information from a non-resonant line such as Halpha is crucial. Therefore, we analyzed a deep MOSFIRE observation of one of the brightest LyA emitting regions in the Slug Nebula with the goal of detecting associated Halpha emission. We also obtained a deep, moderate resolution LyA spectrum of the nearby brightest region of the Slug. We detected an Halpha flux of F_(Halpha)= 2.62 +/- 0.47 x 10^-17 erg/cm^2/s (SB_(Halpha)=2.70 +/- 0.48 x 10^-18 erg/cm^2/s/sq) at the expected spatial and spectral location. Combining the Halpha detection with its corresponding LyA flux (determined from the narrow-band imaging) we calculate a flux ratio of F_(LyA_/F_(Halpha)= 5.5 +/- 1.1. The presence of a skyline at the location of the Halpha emission decreases the signal to noise ratio of the detection and our ability to put stringent constraints on the Halpha kinematics. Our measurements argue for the origin of the LyA emission being recombination radiation, suggesting the presence of high-density ionized gas. Finally, our high-resolution spectroscopic study of the LyA emission does not show evidence of a rotating disk pattern and suggest a more complex origin for at least some parts of the Slug Nebula.
BOSS-EUVLG1 is the most ultraviolet (UV) and Ly$alpha$ luminous galaxy detected so far in the Universe, going through a very active starburst phase, and forming stars at a rate (SFR) of 955 $pm$ 118 M$_{odot}$ yr$^{-1}$. We report the detection of a broad H$alpha$ component carrying 25% of the total H$alpha$ flux. The broad H$alpha$ line traces a fast and massive ionized gas outflow characterized by a total mass, $log(M_{out}[M_{odot}]),$ of 7.94 $pm$ 0.15, an outflowing velocity (V$_{out}$) of 573 $pm$ 151 km s$^{-1}$, and an outflowing mass rate ($dot{M}_{out}$) of 44 $pm$ 20 M$_{odot}$ yr$^{-1}$. The presence of the outflow in BOSS-EUVLG1 is also supported by the identification of blueshifted UV absorption lines in low and high ionization states. The energy involved in the H$alpha$ outflow can be explained by the ongoing star formation without the need for an Active Galactic Nucleus. The derived low mass loading factor ($eta$= 0.05 $pm$ 0.03) indicates that although massive, this phase of the outflow can not be relevant for the quenching of the star formation. In addition, only a small fraction ($leq$ 15%) of the ionized outflowing material with velocities above 372 km s$^{-1}$ could escape the gravitational potential, and enrich the surrounding circum-galactic medium at distances above tens of kpc. The ionized phase of the outflow does not carry the mass and energy to play a relevant role neither in the evolution of the host galaxy nor in the enrichment of the intergalactic medium. Other phases of the outflow could be carrying most of the outflow energy and mass in the form of hot X-ray emitting gas as predicted by some recent simulations. The expected emission of the extended X-ray emitting halo associated with the outflow in BOSS-EUVLG1 and similar galaxies could be detected with the future X-ray observatory, {it ATHENA} but could not be resolved spatially.
We present our ALMA Band 8 observations of a damped Ly${alpha}$ absorption (DLA) system at $z$=3.150 observed in the spectrum of the quasar Q2233+131 at $z$=3.295. The optical counterpart of this DLA has been identified and it shows a double-peaked Ly${alpha}$ emission line. Since one possible origin of DLAs at high redshift is an outflowing gas from star-forming galaxies, DLA2233+131 provides a good laboratory to investigate the nature of high-$z$ DLAs. Motivated by this, we have carried out ALMA band 8 observations to study the [C II] line in this system. However, we do not detect any significant emission line in the observed pass bands. Instead, we have serendipitously found three submm continuum sources in the observed sky area. One appears to be the quasar Q2233+131 itself while the other two sources are newly identified submm galaxies (SMGs), called SMG1 and SMG2 in this paper. They are located at a separation of 400.7 and 800.1 from Q2233+131, respectively. Their 646 ${mu}$m fluxes are 6.35 mJy and 6.43 mJy, respectively, being higher than that of Q2233+131, 3.62 mJy. Since these two SMGs are not detected in the optical images obtained with the Hubble Space Telescope and the Subaru Telescope, they have a very red spectral energy distribution. It is, therefore,suggested that they are high-redshift galaxies or very dusty galaxies at intermediate redshift although we cannot rule out the possibility that they are optically very faint SMG analogs at low redshift. Follow up observations will be necessary to explore the nature of this interesting region.
The evolution of the number density of galaxies in the universe, and thus also the total number of galaxies, is a fundamental question with implications for a host of astrophysical problems including galaxy evolution and cosmology. However there has never been a detailed study of this important measurement, nor a clear path to answer it. To address this we use observed galaxy stellar mass functions up to $zsim8$ to determine how the number densities of galaxies changes as a function of time and mass limit. We show that the increase in the total number density of galaxies ($phi_{rm T}$), more massive than M$_{*} = 10^{6}$ M_0, decreases as $phi_{rm T} sim t^{-1}$, where $t$ is the age of the universe. We further show that this evolution turns-over and rather increases with time at higher mass lower limits of M$_{*}>10^{7}$ M_0. By using the M$_{*}=10^{6}$ M_0 lower limit we further show that the total number of galaxies in the universe up to $z = 8$ is $2.0^{+0.7}_{-0.6} times 10^{12}$ (two trillion), almost a factor of ten higher than would be seen in an all sky survey at Hubble Ultra-Deep Field depth. We discuss the implications for these results for galaxy evolution, as well as compare our results with the latest models of galaxy formation. These results also reveal that the cosmic background light in the optical and near-infrared likely arise from these unobserved faint galaxies. We also show how these results solve the question of why the sky at night is dark, otherwise known as Olbers paradox.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا