No Arabic abstract
In this paper, we answer the question when inserting label noise (less informative labels) can instead return us more accurate and fair models. We are primarily inspired by two observations that 1) increasing a certain class of instances label noise to balance the noise rates (increasing-to-balancing) results in an easier learning problem; 2) Increasing-to-balancing improves fairness guarantees against label bias. In this paper, we will first quantify the trade-offs introduced by increasing a certain group of instances label noise rate w.r.t. the learning difficulties and performance guarantees. We analytically demonstrate when such an increase proves to be beneficial, in terms of either improved generalization errors or the fairness guarantees. Then we present a method to leverage our idea of inserting label noise for the task of learning with noisy labels, either without or with a fairness constraint. The primary technical challenge we face is due to the fact that we would not know which data instances are suffering from higher noise, and we would not have the ground truth labels to verify any possible hypothesis. We propose a detection method that informs us which group of labels might suffer from higher noise, without using ground truth information. We formally establish the effectiveness of the proposed solution and demonstrate it with extensive experiments.
Learning with noisy labels is a practically challenging problem in weakly supervised learning. In the existing literature, open-set noises are always considered to be poisonous for generalization, similar to closed-set noises. In this paper, we empir
Learning with the textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them into parts. Annotators are therefore more likely to annotate instances based on the parts rather than the whole instances, where a wrong mapping from parts to classes may cause the instance-dependent label noise. Motivated by this human cognition, in this paper, we approximate the instance-dependent label noise by exploiting textit{part-dependent} label noise. Specifically, since instances can be approximately reconstructed by a combination of parts, we approximate the instance-dependent textit{transition matrix} for an instance by a combination of the transition matrices for the parts of the instance. The transition matrices for parts can be learned by exploiting anchor points (i.e., data points that belong to a specific class almost surely). Empirical evaluations on synthetic and real-world datasets demonstrate our method is superior to the state-of-the-art approaches for learning from the instance-dependent label noise.
Deep generative models (e.g. GANs and VAEs) have been developed quite extensively in recent years. Lately, there has been an increased interest in the inversion of such a model, i.e. given a (possibly corrupted) signal, we wish to recover the latent vector that generated it. Building upon sparse representation theory, we define conditions that are applicable to any inversion algorithm (gradient descent, deep encoder, etc.), under which such generative models are invertible with a unique solution. Importantly, the proposed analysis is applicable to any trained model, and does not depend on Gaussian i.i.d. weights. Furthermore, we introduce two layer-wise inversion pursuit algorithms for trained generative networks of arbitrary depth, and accompany these with recovery guarantees. Finally, we validate our theoretical results numerically and show that our method outperforms gradient descent when inverting such generators, both for clean and corrupted signals.
Improper or erroneous labelling can pose a hindrance to reliable generalization for supervised learning. This can have negative consequences, especially for critical fields such as healthcare. We propose an effective new approach for learning under extreme label noise, based on under-trained deep ensembles. Each ensemble member is trained with a subset of the training data, to acquire a general overview of the decision boundary separation, without focusing on potentially erroneous details. The accumulated knowledge of the ensemble is combined to form new labels, that determine a better class separation than the original labels. A new model is trained with these labels to generalize reliably despite the label noise. We focus on a healthcare setting and extensively evaluate our approach on the task of sleep apnea detection. For comparison with related work, we additionally evaluate on the task of digit recognition. In our experiments, we observed performance improvement in accuracy from 6.7% up-to 49.3% for the task of digit classification and in kappa from 0.02 up-to 0.55 for the task of sleep apnea detection.
Can models with particular structure avoid being biased towards spurious correlation in out-of-distribution (OOD) generalization? Peters et al. (2016) provides a positive answer for linear cases. In this paper, we use a functional modular probing method to analyze deep model structures under OOD setting. We demonstrate that even in biased models (which focus on spurious correlation) there still exist unbiased functional subnetworks. Furthermore, we articulate and demonstrate the functional lottery ticket hypothesis: full network contains a subnetwork that can achieve better OOD performance. We then propose Modular Risk Minimization to solve the subnetwork selection problem. Our algorithm learns the subnetwork structure from a given dataset, and can be combined with any other OOD regularization methods. Experiments on various OOD generalization tasks corroborate the effectiveness of our method.