Do you want to publish a course? Click here

Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges

100   0   0.0 ( 0 )
 Added by Martin Binder
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Most machine learning algorithms are configured by one or several hyperparameters that must be carefully chosen and often considerably impact performance. To avoid a time consuming and unreproducible manual trial-and-error process to find well-performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods, e.g., based on resampling error estimation for supervised machine learning, can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing. It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.



rate research

Read More

Given a set of empirical observations, conditional density estimation aims to capture the statistical relationship between a conditional variable $mathbf{x}$ and a dependent variable $mathbf{y}$ by modeling their conditional probability $p(mathbf{y}|mathbf{x})$. The paper develops best practices for conditional density estimation for finance applications with neural networks, grounded on mathematical insights and empirical evaluations. In particular, we introduce a noise regularization and data normalization scheme, alleviating problems with over-fitting, initialization and hyper-parameter sensitivity of such estimators. We compare our proposed methodology with popular semi- and non-parametric density estimators, underpin its effectiveness in various benchmarks on simulated and Euro Stoxx 50 data and show its superior performance. Our methodology allows to obtain high-quality estimators for statistical expectations of higher moments, quantiles and non-linear return transformations, with very little assumptions about the return dynamic.
We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn.
Tuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization distributions, richly parameterized regularization schemes, and neural network architectures. We compute hyperparameter gradients by exactly reversing the dynamics of stochastic gradient descent with momentum.
Hyperparameter optimization aims to find the optimal hyperparameter configuration of a machine learning model, which provides the best performance on a validation dataset. Manual search usually leads to get stuck in a local hyperparameter configuration, and heavily depends on human intuition and experience. A simple alternative of manual search is random/grid search on a space of hyperparameters, which still undergoes extensive evaluations of validation errors in order to find its best configuration. Bayesian optimization that is a global optimization method for black-box functions is now popular for hyperparameter optimization, since it greatly reduces the number of validation error evaluations required, compared to random/grid search. Bayesian optimization generally finds the best hyperparameter configuration from random initialization without any prior knowledge. This motivates us to let Bayesian optimization start from the configurations that were successful on similar datasets, which are able to remarkably minimize the number of evaluations. In this paper, we propose deep metric learning to learn meta-features over datasets such that the similarity over them is effectively measured by Euclidean distance between their associated meta-features. To this end, we introduce a Siamese network composed of deep feature and meta-feature extractors, where deep feature extractor provides a semantic representation of each instance in a dataset and meta-feature extractor aggregates a set of deep features to encode a single representation over a dataset. Then, our learned meta-features are used to select a few datasets similar to the new dataset, so that hyperparameters in similar datasets are adopted as initializations to warm-start Bayesian hyperparameter optimization.
93 - Yuansi Chen , Chi Jin , Bin Yu 2018
The overall performance or expected excess risk of an iterative machine learning algorithm can be decomposed into training error and generalization error. While the former is controlled by its convergence analysis, the latter can be tightly handled by algorithmic stability. The machine learning community has a rich history investigating convergence and stability separately. However, the question about the trade-off between these two quantities remains open. In this paper, we show that for any iterative algorithm at any iteration, the overall performance is lower bounded by the minimax statistical error over an appropriately chosen loss function class. This implies an important trade-off between convergence and stability of the algorithm -- a faster converging algorithm has to be less stable, and vice versa. As a direct consequence of this fundamental tradeoff, new convergence lower bounds can be derived for classes of algorithms constrained with different stability bounds. In particular, when the loss function is convex (or strongly convex) and smooth, we discuss the stability upper bounds of gradient descent (GD) and stochastic gradient descent and their variants with decreasing step sizes. For Nesterovs accelerated gradient descent (NAG) and heavy ball method (HB), we provide stability upper bounds for the quadratic loss function. Applying existing stability upper bounds for the gradient methods in our trade-off framework, we obtain lower bounds matching the well-established convergence upper bounds up to constants for these algorithms and conjecture similar lower bounds for NAG and HB. Finally, we numerically demonstrate the tightness of our stability bounds in terms of exponents in the rate and also illustrate via a simulated logistic regression problem that our stability bounds reflect the generalization errors better than the simple uniform convergence bounds for GD and NAG.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا