The Cauchy problem of the modified nonlinear Schr{o}dinger (mNLS) equation with the finite density type initial data is investigated via $overline{partial}$ steepest descent method. In the soliton region of space-time $x/tin(5,7)$, the long-time asymptotic behavior of the mNLS equation is derived for large times. Furthermore, for general initial data in a non-vanishing background, the soliton resolution conjecture for the mNLS equation is verified, which means that the asymptotic expansion of the solution can be characterized by finite number of soliton solutions as the time $t$ tends to infinity, and a residual error $mathcal {O}(t^{-3/4})$ is provided.