We consider Greens functions $G(z):=(H-z)^{-1}$ of Hermitian random band matrices $H$ on the $d$-dimensional lattice $(mathbb Z/Lmathbb Z)^d$. The entries $h_{xy}=overline h_{yx}$ of $H$ are independent centered complex Gaussian random variables with variances $s_{xy}=mathbb E|h_{xy}|^2$. The variances satisfy a banded profile so that $s_{xy}$ is negligible if $|x-y|$ exceeds the band width $W$. For any $nin mathbb N$, we construct an expansion of the $T$-variable, $T_{xy}=|m|^2 sum_{alpha}s_{xalpha}|G_{alpha y}|^2$, with an error $O(W^{-nd/2})$, and use it to prove a local law on the Greens function. This $T$-expansion was the main tool to prove the delocalization and quantum diffusion of random band matrices for dimensions $dge 8$ in part I of this series.