Do you want to publish a course? Click here

Challenges for machine learning in clinical translation of big data imaging studies

114   0   0.0 ( 0 )
 Added by Nicola Dinsdale
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The combination of deep learning image analysis methods and large-scale imaging datasets offers many opportunities to imaging neuroscience and epidemiology. However, despite the success of deep learning when applied to many neuroimaging tasks, there remain barriers to the clinical translation of large-scale datasets and processing tools. Here, we explore the main challenges and the approaches that have been explored to overcome them. We focus on issues relating to data availability, interpretability, evaluation and logistical challenges, and discuss the challenges we believe are still to be overcome to enable the full success of big data deep learning approaches to be experienced outside of the research field.



rate research

Read More

This paper reviews some of the challenges posed by the huge growth of experimental data generated by the new generation of large-scale experiments at UK national facilities at the Rutherford Appleton Laboratory site at Harwell near Oxford. Such Big Scientific Data comes from the Diamond Light Source and Electron Microscopy Facilities, the ISIS Neutron and Muon Facility, and the UKs Central Laser Facility. Increasingly, scientists are now needing to use advanced machine learning and other AI technologies both to automate parts of the data pipeline and also to help find new scientific discoveries in the analysis of their data. For commercially important applications, such as object recognition, natural language processing and automatic translation, deep learning has made dramatic breakthroughs. Googles DeepMind has now also used deep learning technology to develop their AlphaFold tool to make predictions for protein folding. Remarkably, they have been able to achieve some spectacular results for this specific scientific problem. Can deep learning be similarly transformative for other scientific problems? After a brief review of some initial applications of machine learning at the Rutherford Appleton Laboratory, we focus on challenges and opportunities for AI in advancing materials science. Finally, we discuss the importance of developing some realistic machine learning benchmarks using Big Scientific Data coming from a number of different scientific domains. We conclude with some initial examples of our SciML benchmark suite and of the research challenges these benchmarks will enable.
Although there have been several recent advances in the application of deep learning algorithms to chest x-ray interpretation, we identify three major challenges for the translation of chest x-ray algorithms to the clinical setting. We examine the performance of the top 10 performing models on the CheXpert challenge leaderboard on three tasks: (1) TB detection, (2) pathology detection on photos of chest x-rays, and (3) pathology detection on data from an external institution. First, we find that the top 10 chest x-ray models on the CheXpert competition achieve an average AUC of 0.851 on the task of detecting TB on two public TB datasets without fine-tuning or including the TB labels in training data. Second, we find that the average performance of the models on photos of x-rays (AUC = 0.916) is similar to their performance on the original chest x-ray images (AUC = 0.924). Third, we find that the models tested on an external dataset either perform comparably to or exceed the average performance of radiologists. We believe that our investigation will inform rapid translation of deep learning algorithms to safe and effective clinical decision support tools that can be validated prospectively with large impact studies and clinical trials.
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique in biomedical research that uses the fluorophore decay rate to provide additional contrast in fluorescence microscopy. However, at present, the calculation, analysis, and interpretation of FLIM is a complex, slow, and computationally expensive process. Machine learning (ML) techniques are well suited to extract and interpret measurements from multi-dimensional FLIM data sets with substantial improvement in speed over conventional methods. In this topical review, we first discuss the basics of FILM and ML. Second, we provide a summary of lifetime extraction strategies using ML and its applications in classifying and segmenting FILM images with higher accuracy compared to conventional methods. Finally, we discuss two potential directions to improve FLIM with ML with proof of concept demonstrations.
Advances in computing power, deep learning architectures, and expert labelled datasets have spurred the development of medical imaging artificial intelligence systems that rival clinical experts in a variety of scenarios. The National Institutes of Health in 2018 identified key focus areas for the future of artificial intelligence in medical imaging, creating a foundational roadmap for research in image acquisition, algorithms, data standardization, and translatable clinical decision support systems. Among the key issues raised in the report: data availability, need for novel computing architectures and explainable AI algorithms, are still relevant despite the tremendous progress made over the past few years alone. Furthermore, translational goals of data sharing, validation of performance for regulatory approval, generalizability and mitigation of unintended bias must be accounted for early in the development process. In this perspective paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations in developing high-dimensional, multi-modality, machine learning systems for clinical decision support.
In recent years, machine learning has received increased interest both as an academic research field and as a solution for real-world business problems. However, the deployment of machine learning models in production systems can present a number of issues and concerns. This survey reviews published reports of deploying machine learning solutions in a variety of use cases, industries and applications and extracts practical considerations corresponding to stages of the machine learning deployment workflow. Our survey shows that practitioners face challenges at each stage of the deployment. The goal of this paper is to layout a research agenda to explore approaches addressing these challenges.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا