No Arabic abstract
Many reinforcement learning (RL) environments in practice feature enormous state spaces that may be described compactly by a factored structure, that may be modeled by Factored Markov Decision Processes (FMDPs). We present the first polynomial-time algorithm for RL with FMDPs that does not rely on an oracle planner, and instead of requiring a linear transition model, only requires a linear value function with a suitable local basis with respect to the factorization. With this assumption, we can solve FMDPs in polynomial time by constructing an efficient separation oracle for convex optimization. Importantly, and in contrast to prior work, we do not assume that the transitions on various factors are independent.
Reinforcement learning synthesizes controllers without prior knowledge of the system. At each timestep, a reward is given. The controllers optimize the discounted sum of these rewards. Applying this class of algorithms requires designing a reward scheme, which is typically done manually. The designer must ensure that their intent is accurately captured. This may not be trivial, and is prone to error. An alternative to this manual programming, akin to programming directly in assembly, is to specify the objective in a formal language and have it compiled to a reward scheme. Mungojerrie (https://plv.colorado.edu/mungojerrie/) is a tool for testing reward schemes for $omega$-regular objectives on finite models. The tool contains reinforcement learning algorithms and a probabilistic model checker. Mungojerrie supports models specified in PRISM and $omega$-automata specified in HOA.
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited. One exception is Rowland et al. (2018)s analysis of the C51 algorithm in terms of the Cramer distance, but their results only apply to the tabular setting and ignore C51s use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the models prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.
Safety in reinforcement learning has become increasingly important in recent years. Yet, existing solutions either fail to strictly avoid choosing unsafe actions, which may lead to catastrophic results in safety-critical systems, or fail to provide regret guarantees for settings where safety constraints need to be learned. In this paper, we address both problems by first modeling safety as an unknown linear cost function of states and actions, which must always fall below a certain threshold. We then present algorithms, termed SLUCB-QVI and RSLUCB-QVI, for episodic Markov decision processes (MDPs) with linear function approximation. We show that SLUCB-QVI and RSLUCB-QVI, while with emph{no safety violation}, achieve a $tilde{mathcal{O}}left(kappasqrt{d^3H^3T}right)$ regret, nearly matching that of state-of-the-art unsafe algorithms, where $H$ is the duration of each episode, $d$ is the dimension of the feature mapping, $kappa$ is a constant characterizing the safety constraints, and $T$ is the total number of action plays. We further present numerical simulations that corroborate our theoretical findings.
Deep Reinforcement Learning (DRL) methods have performed well in an increasing numbering of high-dimensional visual decision making domains. Among all such visual decision making problems, those with discrete action spaces often tend to have underlying compositional structure in the said action space. Such action spaces often contain actions such as go left, go up as well as go diagonally up and left (which is a composition of the former two actions). The representations of control policies in such domains have traditionally been modeled without exploiting this inherent compositional structure in the action spaces. We propose a new learning paradigm, Factored Action space Representations (FAR) wherein we decompose a control policy learned using a Deep Reinforcement Learning Algorithm into independent components, analogous to decomposing a vector in terms of some orthogonal basis vectors. This architectural modification of the control policy representation allows the agent to learn about multiple actions simultaneously, while executing only one of them. We demonstrate that FAR yields considerable improvements on top of two DRL algorithms in Atari 2600: FARA3C outperforms A3C (Asynchronous Advantage Actor Critic) in 9 out of 14 tasks and FARAQL outperforms AQL (Asynchronous n-step Q-Learning) in 9 out of 13 tasks.
Millions of battery-powered sensors deployed for monitoring purposes in a multitude of scenarios, e.g., agriculture, smart cities, industry, etc., require energy-efficient solutions to prolong their lifetime. When these sensors observe a phenomenon distributed in space and evolving in time, it is expected that collected observations will be correlated in time and space. In this paper, we propose a Deep Reinforcement Learning (DRL) based scheduling mechanism capable of taking advantage of correlated information. We design our solution using the Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates, to ensure accurate collection of observations, while simultaneously considering the energy available. To evaluate our scheduling mechanism, we use multiple datasets containing environmental observations obtained in multiple real deployments. The real observations enable us to model the environment with which the mechanism interacts as realistically as possible. We show that our solution can significantly extend the sensors lifetime. We compare our mechanism to an idealized, all-knowing scheduler to demonstrate that its performance is near-optimal. Additionally, we highlight the unique feature of our design, energy-awareness, by displaying the impact of sensors energy levels on the frequency of updates.