Do you want to publish a course? Click here

Finite simple automorphism groups of edge-transitive maps

114   0   0.0 ( 0 )
 Added by Gareth Jones
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Building on earlier results for regular maps and for orientably regular chiral maps, we classify the non-abelian finite simple groups arising as automorphism groups of maps in each of the 14 Graver-Watkins classes of edge-transitive maps.



rate research

Read More

111 - Gareth A. Jones 2018
A detailed proof is given of a theorem describing the centraliser of a transitive permutation group, with applications to automorphism groups of objects in various categories of maps, hypermaps, dessins, polytopes and covering spaces, where the automorphism group of an object is the centraliser of its monodromy group. An alternative form of the theorem, valid for finite objects, is discussed, with counterexamples based on Baumslag--Solitar groups to show how it fails more generally. The automorphism groups of objects with primitive monodromy groups are described, as are those of non-connected objects.
In this article we present an extensive survey on the developments in the theory of non-abelian finite groups with abelian automorphism groups, and pose some problems and further research directions.
For a finite group $G$, let $mathrm{diam}(G)$ denote the maximum diameter of a connected Cayley graph of $G$. A well-known conjecture of Babai states that $mathrm{diam}(G)$ is bounded by ${(log_{2} |G|)}^{O(1)}$ in case $G$ is a non-abelian finite simple group. Let $G$ be a finite simple group of Lie type of Lie rank $n$ over the field $F_{q}$. Babais conjecture has been verified in case $n$ is bounded, but it is wide open in case $n$ is unbounded. Recently, Biswas and Yang proved that $mathrm{diam}(G)$ is bounded by $q^{O( n {(log_{2}n + log_{2}q)}^{3})}$. We show that in fact $mathrm{diam}(G) < q^{O(n {(log_{2}n)}^{2})}$ holds. Note that our bound is significantly smaller than the order of $G$ for $n$ large, even if $q$ is large. As an application, we show that more generally $mathrm{diam}(H) < q^{O( n {(log_{2}n)}^{2})}$ holds for any subgroup $H$ of $mathrm{GL}(V)$, where $V$ is a vector space of dimension $n$ defined over the field $F_q$.
A family $mathcal L$ of subsets of a set $X$ is called linked if $Acap B eemptyset$ for any $A,Binmathcal L$. A linked family $mathcal M$ of subsets of $X$ is maximal linked if $mathcal M$ coincides with each linked family $mathcal L$ on $X$ that contains $mathcal M$. The superextension $lambda(X)$ of $X$ consists of all maximal linked families on $X$. Any associative binary operation $* : Xtimes X to X$ can be extended to an associative binary operation $*: lambda(X)timeslambda(X)tolambda(X)$. In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality $leq 5$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا