Semiconductors with very low lattice thermal conductivities are highly desired for applications relevant to thermal energy conversion and management, such as thermoelectrics and thermal barrier coatings. Although the crystal structure and chemical bonding are known to play vital roles in shaping heat transfer behavior, material design approaches of lowering lattice thermal conductivity using chemical bonding principles are uncommon. In this work, we present an effective strategy of weakening interatomic interactions and therefore suppressing lattice thermal conductivity based on chemical bonding principles and develop a high-efficiency approach of discovering low $kappa_{rm L}$ materials by screening the local coordination environments of crystalline compounds. The followed first-principles calculations uncover 30 hitherto unexplored compounds with (ultra)low lattice thermal conductivities from thirteen prototype crystal structures contained in the inorganic crystal structure database. Furthermore, we demonstrate an approach of rationally designing high-performance thermoelectrics by additionally incorporating cations with stereochemically active lone-pair electrons. Our results not only provide fundamental insights into the physical origin of the low lattice thermal conductivity in a large family of copper-based compounds but also offer an efficient approach to discovery and design materials with targeted thermal transport properties.