Do you want to publish a course? Click here

LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Control of Iterative Tasks

173   0   0.0 ( 0 )
 Added by Ashwin Balakrishna
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reinforcement learning (RL) algorithms have shown impressive success in exploring high-dimensional environments to learn complex, long-horizon tasks, but can often exhibit unsafe behaviors and require extensive environment interaction when exploration is unconstrained. A promising strategy for safe learning in dynamically uncertain environments is requiring that the agent can robustly return to states where task success (and therefore safety) can be guaranteed. While this approach has been successful in low-dimensions, enforcing this constraint in environments with high-dimensional state spaces, such as images, is challenging. We present Latent Space Safe Sets (LS3), which extends this strategy to iterative, long-horizon tasks with image observations by using suboptimal demonstrations and a learned dynamics model to restrict exploration to the neighborhood of a learned Safe Set where task completion is likely. We evaluate LS3 on 4 domains, including a challenging sequential pushing task in simulation and a physical cable routing task. We find that LS3 can use prior task successes to restrict exploration and learn more efficiently than prior algorithms while satisfying constraints. See https://tinyurl.com/latent-ss for code and supplementary material.



rate research

Read More

Many robotic applications require the agent to perform long-horizon tasks in partially observable environments. In such applications, decision making at any step can depend on observations received far in the past. Hence, being able to properly memorize and utilize the long-term history is crucial. In this work, we propose a novel memory-based policy, named Scene Memory Transformer (SMT). The proposed policy embeds and adds each observation to a memory and uses the attention mechanism to exploit spatio-temporal dependencies. This model is generic and can be efficiently trained with reinforcement learning over long episodes. On a range of visual navigation tasks, SMT demonstrates superior performance to existing reactive and memory-based policies by a margin.
Learning competitive behaviors in multi-agent settings such as racing requires long-term reasoning about potential adversarial interactions. This paper presents Deep Latent Competition (DLC), a novel reinforcement learning algorithm that learns competitive visual control policies through self-play in imagination. The DLC agent imagines multi-agent interaction sequences in the compact latent space of a learned world model that combines a joint transition function with opponent viewpoint prediction. Imagined self-play reduces costly sample generation in the real world, while the latent representation enables planning to scale gracefully with observation dimensionality. We demonstrate the effectiveness of our algorithm in learning competitive behaviors on a novel multi-agent racing benchmark that requires planning from image observations. Code and videos available at https://sites.google.com/view/deep-latent-competition.
We consider the problem of learning multi-stage vision-based tasks on a real robot from a single video of a human performing the task, while leveraging demonstration data of subtasks with other objects. This problem presents a number of major challenges. Video demonstrations without teleoperation are easy for humans to provide, but do not provide any direct supervision. Learning policies from raw pixels enables full generality but calls for large function approximators with many parameters to be learned. Finally, compound tasks can require impractical amounts of demonstration data, when treated as a monolithic skill. To address these challenges, we propose a method that learns both how to learn primitive behaviors from video demonstrations and how to dynamically compose these behaviors to perform multi-stage tasks by watching a human demonstrator. Our results on a simulated Sawyer robot and real PR2 robot illustrate our method for learning a variety of order fulfillment and kitchen serving tasks with novel objects and raw pixel inputs.
Learning and planning with latent space dynamics has been shown to be useful for sample efficiency in model-based reinforcement learning (MBRL) for discrete and continuous control tasks. In particular, recent work, for discrete action spaces, demonstrated the effectiveness of latent-space planning via Monte-Carlo Tree Search (MCTS) for bootstrapping MBRL during learning and at test time. However, the potential gains from latent-space tree search have not yet been demonstrated for environments with continuous action spaces. In this work, we propose and explore an MBRL approach for continuous action spaces based on tree-based planning over learned latent dynamics. We show that it is possible to demonstrate the types of bootstrapping benefits as previously shown for discrete spaces. In particular, the approach achieves improved sample efficiency and performance on a majority of challenging continuous-control benchmarks compared to the state-of-the-art.
We present HiDe, a novel hierarchical reinforcement learning architecture that successfully solves long horizon control tasks and generalizes to unseen test scenarios. Functional decomposition between planning and low-level control is achieved by explicitly separating the state-action spaces across the hierarchy, which allows the integration of task-relevant knowledge per layer. We propose an RL-based planner to efficiently leverage the information in the planning layer of the hierarchy, while the control layer learns a goal-conditioned control policy. The hierarchy is trained jointly but allows for the composition of different policies such as transferring layers across multiple agents. We experimentally show that our method generalizes across unseen test environments and can scale to tasks well beyond 3x horizon length compared to both learning and non-learning based approaches. We evaluate on complex continuous control tasks with sparse rewards, including navigation and robot manipulation.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا