Do you want to publish a course? Click here

Consensual Collaborative Training And Knowledge Distillation Based Facial Expression Recognition Under Noisy Annotations

117   0   0.0 ( 0 )
 Added by Darshan Gera
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Presence of noise in the labels of large scale facial expression datasets has been a key challenge towards Facial Expression Recognition (FER) in the wild. During early learning stage, deep networks fit on clean data. Then, eventually, they start overfitting on noisy labels due to their memorization ability, which limits FER performance. This work proposes an effective training strategy in the presence of noisy labels, called as Consensual Collaborative Training (CCT) framework. CCT co-trains three networks jointly using a convex combination of supervision loss and consistency loss, without making any assumption about the noise distribution. A dynamic transition mechanism is used to move from supervision loss in early learning to consistency loss for consensus of predictions among networks in the later stage. Inference is done using a single network based on a simple knowledge distillation scheme. Effectiveness of the proposed framework is demonstrated on synthetic as well as real noisy FER datasets. In addition, a large test subset of around 5K images is annotated from the FEC dataset using crowd wisdom of 16 different annotators and reliable labels are inferred. CCT is also validated on it. State-of-the-art performance is reported on the benchmark FER datasets RAFDB (90.84%) FERPlus (89.99%) and AffectNet (66%). Our codes are available at https://github.com/1980x/CCT.



rate research

Read More

Facial expression recognition from videos in the wild is a challenging task due to the lack of abundant labelled training data. Large DNN (deep neural network) architectures and ensemble methods have resulted in better performance, but soon reach saturation at some point due to data inadequacy. In this paper, we use a self-training method that utilizes a combination of a labelled dataset and an unlabelled dataset (Body Language Dataset - BoLD). Experimental analysis shows that training a noisy student network iteratively helps in achieving significantly better results. Additionally, our model isolates different regions of the face and processes them independently using a multi-level attention mechanism which further boosts the performance. Our results show that the proposed method achieves state-of-the-art performance on benchmark datasets CK+ and AFEW 8.0 when compared to other single models.
Human emotions can be inferred from facial expressions. However, the annotations of facial expressions are often highly noisy in common emotion coding models, including categorical and dimensional ones. To reduce human labelling effort on multi-task labels, we introduce a new problem of facial emotion recognition with noisy multi-task annotations. For this new problem, we suggest a formulation from the point of joint distribution match view, which aims at learning more reliable correlations among raw facial images and multi-task labels, resulting in the reduction of noise influence. In our formulation, we exploit a new method to enable the emotion prediction and the joint distribution learning in a unified adversarial learning game. Evaluation throughout extensive experiments studies the real setups of the suggested new problem, as well as the clear superiority of the proposed method over the state-of-the-art competing methods on either the synthetic noisy labeled CIFAR-10 or practical noisy multi-task labeled RAF and AffectNet. The code is available at https://github.com/sanweiliti/noisyFER.
104 - Tao Pu , Tianshui Chen , Yuan Xie 2020
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance in some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance caused by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.
In this paper, covariance matrices are exploited to encode the deep convolutional neural networks (DCNN) features for facial expression recognition. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By performing the classification of the facial expressions using Gaussian kernel on SPD manifold, we show that the covariance descriptors computed on DCNN features are more efficient than the standard classification with fully connected layers and softmax. By implementing our approach using the VGG-face and ExpNet architectures with extensive experiments on the Oulu-CASIA and SFEW datasets, we show that the proposed approach achieves performance at the state of the art for facial expression recognition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا