Do you want to publish a course? Click here

BayesSimIG: Scalable Parameter Inference for Adaptive Domain Randomization with IsaacGym

366   0   0.0 ( 0 )
 Added by Rika Antonova
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

BayesSim is a statistical technique for domain randomization in reinforcement learning based on likelihood-free inference of simulation parameters. This paper outlines BayesSimIG: a library that provides an implementation of BayesSim integrated with the recently released NVIDIA IsaacGym. This combination allows large-scale parameter inference with end-to-end GPU acceleration. Both inference and simulation get GPU speedup, with support for running more than 10K parallel simulation environments for complex robotics tasks that can have more than 100 simulation parameters to estimate. BayesSimIG provides an integration with TensorBoard to easily visualize slices of high-dimensional posteriors. The library is built in a modular way to support research experiments with novel ways to collect and process the trajectories from the parallel IsaacGym environments.

rate research

Read More

Deep learning-based robotic grasping has made significant progress thanks to algorithmic improvements and increased data availability. However, state-of-the-art models are often trained on as few as hundreds or thousands of unique object instances, and as a result generalization can be a challenge. In this work, we explore a novel data generation pipeline for training a deep neural network to perform grasp planning that applies the idea of domain randomization to object synthesis. We generate millions of unique, unrealistic procedurally generated objects, and train a deep neural network to perform grasp planning on these objects. Since the distribution of successful grasps for a given object can be highly multimodal, we propose an autoregressive grasp planning model that maps sensor inputs of a scene to a probability distribution over possible grasps. This model allows us to sample grasps efficiently at test time (or avoid sampling entirely). We evaluate our model architecture and data generation pipeline in simulation and the real world. We find we can achieve a $>$90% success rate on previously unseen realistic objects at test time in simulation despite having only been trained on random objects. We also demonstrate an 80% success rate on real-world grasp attempts despite having only been trained on random simulated objects.
139 - Zeyi Yang , Sheng Ge , Fang Wan 2020
Robotic fingers made of soft material and compliant structures usually lead to superior adaptation when interacting with the unstructured physical environment. In this paper, we present an embedded sensing solution using optical fibers for an omni-adaptive soft robotic finger with exceptional adaptation in all directions. In particular, we managed to insert a pair of optical fibers inside the fingers structural cavity without interfering with its adaptive performance. The resultant integration is scalable as a versatile, low-cost, and moisture-proof solution for physically safe human-robot interaction. In addition, we experimented with our finger design for an object sorting task and identified sectional diameters of 94% objects within the $pm$6mm error and measured 80% of the structural strains within $pm$0.1mm/mm error. The proposed sensor design opens many doors in future applications of soft robotics for scalable and adaptive physical interactions in the unstructured environment.
458 - Yichong Zhang , Xin Zheng 2018
In this paper, we study the estimation and inference of the quantile treatment effect under covariate-adaptive randomization. We propose two estimation methods: (1) the simple quantile regression and (2) the inverse propensity score weighted quantile regression. For the two estimators, we derive their asymptotic distributions uniformly over a compact set of quantile indexes, and show that, when the treatment assignment rule does not achieve strong balance, the inverse propensity score weighted estimator has a smaller asymptotic variance than the simple quantile regression estimator. For the inference of method (1), we show that the Wald test using a weighted bootstrap standard error under-rejects. But for method (2), its asymptotic size equals the nominal level. We also show that, for both methods, the asymptotic size of the Wald test using a covariate-adaptive bootstrap standard error equals the nominal level. We illustrate the finite sample performance of the new estimation and inference methods using both simulated and real datasets.
Bayesian inference via standard Markov Chain Monte Carlo (MCMC) methods is too computationally intensive to handle large datasets, since the cost per step usually scales like $Theta(n)$ in the number of data points $n$. We propose the Scalable Metropolis-Hastings (SMH) kernel that exploits Gaussian concentration of the posterior to require processing on average only $O(1)$ or even $O(1/sqrt{n})$ data points per step. This scheme is based on a combination of factorized acceptance probabilities, procedures for fast simulation of Bernoulli processes, and control variate ideas. Contrary to many MCMC subsampling schemes such as fixed step-size Stochastic Gradient Langevin Dynamics, our approach is exact insofar as the invariant distribution is the true posterior and not an approximation to it. We characterise the performance of our algorithm theoretically, and give realistic and verifiable conditions under which it is geometrically ergodic. This theory is borne out by empirical results that demonstrate overall performance benefits over standard Metropolis-Hastings and various subsampling algorithms.
We consider the problem of transferring policies to the real world by training on a distribution of simulated scenarios. Rather than manually tuning the randomization of simulations, we adapt the simulation parameter distribution using a few real world roll-outs interleaved with policy training. In doing so, we are able to change the distribution of simulations to improve the policy transfer by matching the policy behavior in simulation and the real world. We show that policies trained with our method are able to reliably transfer to different robots in two real world tasks: swing-peg-in-hole and opening a cabinet drawer. The video of our experiments can be found at https://sites.google.com/view/simopt

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا