Multiscale genesis of a tiny giant for percolation on scale-free random graphs


Abstract in English

We study the critical behavior for percolation on inhomogeneous random networks on $n$ vertices, where the weights of the vertices follow a power-law distribution with exponent $tau in (2,3)$. Such networks, often referred to as scale-free networks, exhibit critical behavior when the percolation probability tends to zero at an appropriate rate, as $ntoinfty$. We identify the critical window for a host of scale-free random graph models such as the Norros-Reittu model, Chung-Lu model and generalized random graphs. Surprisingly, there exists a finite time inside the critical window, after which, we see a sudden emergence of a tiny giant component. This is a novel behavior which is in contrast with the critical behavior in other known universality classes with $tau in (3,4)$ and $tau >4$. Precisely, for edge-retention probabilities $pi_n = lambda n^{-(3-tau)/2}$, there is an explicitly computable $lambda_c>0$ such that the critical window is of the form $lambda in (0,lambda_c),$ where the largest clusters have size of order $n^{beta}$ with $beta=(tau^2-4tau+5)/[2(tau-1)]in[sqrt{2}-1, tfrac{1}{2})$ and have non-degenerate scaling limits, while in the supercritical regime $lambda > lambda_c$, a unique `tiny giant component of size $sqrt{n}$ emerges. For $lambda in (0,lambda_c),$ the scaling limit of the maximum component sizes can be described in terms of components of a one-dimensional inhomogeneous percolation model on $mathbb{Z}_+$ studied in a seminal work by Durrett and Kesten. For $lambda>lambda_c$, we prove that the sudden emergence of the tiny giant is caused by a phase transition inside a smaller core of vertices of weight $Omega(sqrt{n})$.

Download