Contagion in simplicial complexes


Abstract in English

The propagation of information in social, biological and technological systems represents a crucial component in their dynamic behavior. When limited to pairwise interactions, a rather firm grip is available on the relevant parameters and critical transitions of these spreading processes, most notably the pandemic transition, which indicates the conditions for the spread to cover a large fraction of the network. The challenge is that, in many relevant applications, the spread is driven by higher order relationships, in which several components undergo a group interaction. To address this, we analyze the spreading dynamics in a simplicial complex environment, designed to capture the coexistence of interactions of different orders. We find that, while pairwise interactions play a key role in the initial stages of the spread, once it gains coverage, higher order simplices take over and drive the contagion dynamics. The result is a distinctive spreading phase diagram, exhibiting a discontinuous pandemic transition, and hence offering a qualitative departure from the traditional network spreading dynamics.

Download