Do you want to publish a course? Click here

New Giant Planet beyond the Snow Line for an Extended MOA Exoplanet Microlens Sample

104   0   0.0 ( 0 )
 Added by Cl\\'ement Ranc
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Characterizing a planet detected by microlensing is hard if the planetary signal is weak or the lens-source relative trajectory is far from caustics. However, statistical analyses of planet demography must include those planets to accurately determine occurrence rates. As part of a systematic modeling effort in the context of a $>10$-year retrospective analysis of MOAs survey observations to build an extended MOA statistical sample, we analyze the light curve of the planetary microlensing event MOA-2014-BLG-472. This event provides weak constraints on the physical parameters of the lens, as a result of a planetary anomaly occurring at low magnification in the light curve. We use a Bayesian analysis to estimate the properties of the planet, based on a refined Galactic model and the assumption that all Milky Ways stars have an equal planet-hosting probability. We find that a lens consisting of a $1.9^{+2.2}_{-1.2},mathrm{M}_mathrm{J}$ giant planet orbiting a $0.31^{+0.36}_{-0.19},mathrm{M}_odot$ host at a projected separation of $0.75pm0.24,mathrm{au}$ is consistent with the observations and is most likely, based on the Galactic priors. The lens most probably lies in the Galactic bulge, at $7.2^{+0.6}_{-1.7}mathrm{kpc}$ from Earth. The accurate measurement of the measured planet-to-host star mass ratio will be included in the next statistical analysis of cold planet demography detected by microlensing.



rate research

Read More

311 - N. Kains , R. Street , J.-Y. Choi 2013
We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic Bulge. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q=1.9 x 10^-3. Thanks to our detection of higher-order effects on the light curve due to the Earths orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. We find that the lens is made up of a planet of mass 0.53 +- 0.21,M_Jup orbiting an M dwarf host star with a mass of 0.26 +- 0.11 M_Sun. The planetary system is located at a distance of 2.57 +- 0.61 kpc towards the Galactic Centre. The projected separation of the planet from its host star is d=1.408 +- 0.019, in units of the Einstein radius, which corresponds to 2.72 +- 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 +- 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around 1-1.5 AU.
We present the analysis of the microlensing event OGLE-2018-BLG-1428, which has a short-duration ($sim 1$ day) caustic-crossing anomaly. The event was caused by a planetary lens system with planet/host mass ratio $q=1.7times10^{-3}$. Thanks to the detection of the caustic-crossing anomaly, the finite source effect was well measured, but the microlens parallax was not constrained due to the relatively short timescale ($t_{rm E}=24$ days). From a Bayesian analysis, we find that the host star is a dwarf star $M_{rm host}=0.43^{+0.33}_{-0.22} M_{odot}$ at a distance $D_{rm L}=6.22^{+1.03}_{-1.51} {rm kpc}$ and the planet is a Jovian-mass planet $M_{rm p}=0.77^{+0.77}_{-0.53} M_{rm J}$ with a projected separation $a_{perp}=3.30^{+0.59}_{-0.83} {rm au}$. The planet orbits beyond the snow line of the host star. Considering the relative lens-source proper motion of $mu_{rm rel} = 5.58 pm 0.38 rm mas yr^{-1}$, the lens can be resolved by adaptive optics with a 30m telescope in the future.
We develop a simple model to predict the radial distribution of planetesimal formation. The model is based on the observed growth of dust to mm-sized particles, which drift radially, pile-up, and form planetesimals where the stopping time and dust-to-gas ratio intersect the allowed region for streaming instability-induced gravitational collapse. Using an approximate analytic treatment, we first show that drifting particles define a track in metallicity--stopping time space whose only substantial dependence is on the disks angular momentum transport efficiency. Prompt planetesimal formation is feasible for high particle accretion rates (relative to the gas, $dot{M}_p / dot{M} > 3 times 10^{-2}$ for $alpha = 10^{-2}$), that could only be sustained for a limited period of time. If it is possible, it would lead to the deposition of a broad and massive belt of planetesimals with a sharp outer edge. Including turbulent diffusion and vapor condensation processes numerically, we find that a modest enhancement of solids near the snow line occurs for cm-sized particles, but that this is largely immaterial for planetesimal formation. We note that radial drift couples planetesimal formation across radii in the disk, and suggest that considerations of planetesimal formation favor a model in which the initial deposition of material for giant planet cores occurs well beyond the snow line.
We report the discovery and the analysis of the short (tE < 5 days) planetary microlensing event, OGLE-2015-BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment (OGLE), and the planetary anomaly (at I ~ 19) was captured by The Korea Microlensing Telescope Network (KMTNet). The event has three surviving planetary models that explain the observed light curves, with planet-host mass ratio q ~ 5.4 * 10^{-3}, 4.5 * 10^{-3} and 4.5 * 10^{-2}, respectively. The first model is the best-fit model, while the second model is disfavored by Deltachi^2 ~ 3. The last model is strongly disfavored by Deltachi^2 ~ 15 but not ruled out. A Bayesian analysis using a Galactic model indicates that the first two models are probably composed of a Saturn-mass planet orbiting a late M dwarf, while the third one could consist of a super-Jovian planet and a mid-mass brown dwarf. The source-lens relative proper motion is mu_rel ~ 9 mas/yr, so the source and lens could be resolved by current adaptive-optics (AO) instruments in 2021 if the lens is luminous.
We visually inspected the light curves of 7557 Kepler Objects of Interest (KOIs) to search for single transit events (STEs) possibly due to long-period giant planets. We identified 28 STEs in 24 KOIs, among which 14 events are newly reported in this paper. We estimate the radius and orbital period of the objects causing STEs by fitting the STE light curves simultaneously with the transits of the other planets in the system or with the prior information on the host star density. As a result, we found that STEs in seven of those systems are consistent with Neptune- to Jupiter-sized objects of orbital periods ranging from a few to $sim$ $20,mathrm{yr}$. We also estimate that $gtrsim20%$ of the compact multi-transiting systems host cool giant planets with periods $gtrsim 3,mathrm{yr}$ on the basis of their occurrence in the KOIs with multiple candidates, assuming the small mutual inclination between inner and outer planetary orbits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا