Do you want to publish a course? Click here

The most luminous blue quasars at 3.0<z<3.3. II. CIV/X-ray emission and accretion disc physics

90   0   0.0 ( 0 )
 Added by Elisabeta Lusso Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the properties of the CIV broad emission line in connection with the X-ray emission of 30 bright SDSS quasars at z~3.0-3.3 with pointed XMM-Newton observations, which were selected to test the suitability of AGN as cosmological tools. In our previous work, we found that a large fraction (~25%) of the quasars in this sample are X-ray underluminous by factors of >3-10. As absorbing columns of >10$^{23}$ cm$^{-2}$ can be safely ruled out, their weakness is most likely intrinsic. Here we explore possible correlations between the UV and X-ray features of these sources to investigate the origin of X-ray weakness. We fit their UV SDSS spectra and analyse their CIV properties (e.g., equivalent width, EW; line peak velocity, $upsilon_{rm peak}$) as a function of the X-ray photon index and 2-10 keV flux. We confirm the trends of CIV $upsilon_{rm peak}$ and EW with UV luminosity at 2500 angstrom for both X-ray weak and X-ray normal quasars, as well as the correlation between X-ray weakness and CIV EW. In contrast to some recent work, we do not observe any clear relation between the 2-10 keV luminosity and $upsilon_{rm peak}$. We find a correlation between the hard X-ray flux and the integrated CIV flux for X-ray normal quasars, whilst X-ray weak quasars deviate from the main trend by more than 0.5 dex. We argue that X-ray weakness might be interpreted in a starved X-ray corona picture associated with an ongoing disc-wind phase. If the wind is ejected in the vicinity of the black hole, the extreme-UV radiation that reaches the corona will be depleted, depriving the corona of seeds photons and generating an X-ray weak quasar. Yet, at the largest UV luminosities (>10$^{47}$ erg s$^{-1}$), there will still be an ample reservoir of ionising photons that can explain the excess CIV emission observed in the X-ray weak quasars with respect to normal sources of similar X-ray luminosities.



rate research

Read More

(abridged) We present the X-ray analysis of a sample of 30 luminous quasars at $zsimeq3.0-3.3$ with deep XMM-Newton observations, selected from the SDSS-DR7 to be representative of the most luminous, intrinsically blue quasar population. By construction, the sample boasts a unique degree of homogeneity in terms of optical/UV properties. In the X-rays, only four sources are too faint for a detailed spectral analysis. Neglecting a radio-loud object, the other 25 quasars are, as a whole, the most X-ray luminous ever observed, with rest-frame 2-10 keV luminosities of $0.5-7times10^{45}$ erg/s. The continuum photon index distribution, centred at $Gammasim1.85$, is in excellent agreement with those in place at lower redshift, luminosity and black-hole mass, confirming the universal nature of the X-ray emission mechanism in quasars. Even so, when compared against the well-known $L_{rm X}-L_{rm UV}$ correlation, our quasars unexpectedly split into two distinct subsets. About 2/3 of the sources are clustered around the relation with a minimal scatter of 0.1 dex, while the remaining 1/3 appear to be X-ray underluminous by factors of $>3-10$. Such a large incidence ($approx25%$) of X-ray weakness has never been reported in radio-quiet, non-BAL quasar samples. Several factors could contribute to enhance the X-ray weakness fraction among our $zsimeq3$ blue quasars. However, the X-ray weak objects also have, on average, flatter spectra, with no clear evidence of absorption. Indeed, column densities in excess of a few $times10^{22}$ cm$^{-2}$ can be ruled out for most of the sample. We suggest that, at least in some of our X-ray weak quasars, the corona might experience a radiatively inefficient phase due to the presence of a powerful accretion-disc wind, which substantially reduces the accretion rate through the inner disc and so the availability of seed photons for Compton up-scattering.
Using a sample of 30,000 quasars from SDSS-DR7, we explore the range of properties exhibited by high-ionization, broad emission lines, such as CIV 1549. Specifically we investigate the anti-correlation between L_UV and emission line EQW (the Baldwin Effect) and the blueshifting of high-ionization emission lines. The blueshift of the CIV emission line is nearly ubiquitous, with a mean shift of 810 km/s for radio-quiet (RQ) quasars and 360 km/s for radio-loud (RL) quasars, and the Baldwin Effect is present in both RQ and RL samples. Composite spectra are constructed as a function of CIV emission line properties in attempt to reveal empirical relationships between different line species and the SED. Within a two-component disk+wind model of the broad emission line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while BALQSOs are consistent with being dominated by the wind component. Some RQ objects have emission line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of L_bol and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters are due to differences in an accretion disk wind between quasars (and over time); these differences are underlain primarily by the SED, which ultimately must be tied to BH mass and accretion rate.
We perform a survey of the X-ray properties of 41 objects from the WISE/SDSS selected Hyper-luminous (WISSH) quasars sample, composed by 86 broad-line quasars (QSOs) with bolometric luminosity $L_{Bol}geq 2times 10^{47},erg, s^{-1}$, at z~2-4. All but 3 QSOs show unabsorbed 2-10 keV luminosities $L_{2-10}geq10^{45} ,erg ,s^{-1}$. Thanks to their extreme radiative output across the Mid-IR-to-X-ray range, WISSH QSOs offer the opportunity to significantly extend and validate the existing relations involving $L_{2-10}$. We study $L_{2-10}$ as a function of (i) X-ray-to-Optical (X/O) flux ratio, (ii) mid-IR luminosity ($L_{MIR}$), (iii) $L_{Bol}$ as well as (iv) $alpha_{OX}$ vs. the 2500$mathring{A}$ luminosity. We find that WISSH QSOs show very low X/O(<0.1) compared to typical AGN values; $L_{2-10}/L_{MIR}$ ratios significantly smaller than those derived for AGN with lower luminosity; large X-ray bolometric corrections $k_{rm Bol,X}sim$ 100-1000; and steep $-2<alpha_{OX}<-1.7$. These results lead to a scenario where the X-ray emission of hyper-luminous quasars is relatively weaker compared to lower-luminosity AGN. Models predict that such an X-ray weakness can be relevant for the acceleration of powerful high-ionization emission line-driven winds, commonly detected in the UV spectra of WISSH QSOs, which can in turn perturb the X-ray corona and weaken its emission. Accordingly, hyper-luminous QSOs represent the ideal laboratory to study the link between the AGN energy output and wind acceleration. Additionally, WISSH QSOs show very large BH masses ($log[M_{rm BH}/M_{odot}]$>9.5). This enables a more robust modeling of the $Gamma-M_{BH}$ relation by increasing the statistics at high masses. We derive a flatter $Gamma$ dependence than previously found over the broad range 5 <$log(M_{rm BH}/M_{odot})$ < 11.
We present new X-ray observations of luminous heavily dust-reddened quasars (HRQs) selected from infrared sky surveys. HRQs appear to be a dominant population at high redshifts and the highest luminosities, and may be associated with a transitional blowout phase of black hole and galaxy co-evolution models. Despite this, their high-energy properties have been poorly known. We use the overall sample of $10$ objects with XMM-Newton coverage to study the high-energy properties of HRQs at $left< L_{rm bol} right> = 10^{47.5}$ erg/s and $left< z right>= 2.5$. For the seven sources with strong X-ray detections, we perform spectral analyses. These find a median X-ray luminosity of $left< L_{rm 2-10,keV} right> = 10^{45.1}$ erg/s, comparable to the most powerful X-ray quasars known. The gas column densities are $N_{rm H}=(1$-$8)times 10^{22}$ cm$^{-2}$, in agreement with the amount of dust extinction observed. The dust to gas ratios are sub-Galactic, but are higher than found in local AGN. The intrinsic X-ray luminosities of HRQs are weak compared to the mid-infrared ($L_{rm 6mu m}$) and bolometric luminosities ($L_{rm bol}$), in agreement with findings for other luminous quasar samples. For instance, the X-ray to bolometric corrections range from $kappa_{rm bol}approx 50$-$3000$. The moderate absorption levels and accretion rates close to the Eddington limit ($left< lambda_{rm Edd} right>=1.06$) are in agreement with a quasar blowout phase. Indeed, we find that the HRQs lie in the forbidden region of the $N_{rm H}$-$lambda_{rm Edd}$ plane, and therefore that radiation pressure feedback on the dusty interstellar medium may be driving a phase of blowout that has been ongoing for a few $10^{5}$ years. The wider properties, including [OIII] narrow-line region kinematics, broadly agree with this interpretation.
We characterise ionised gas outflows using a large sample of ~330 high-luminosity (45.5 < log(L_bol/erg s^-1) < 49.0), high-redshift (1.5 < z < 4.0) quasars via their [OIII]4960,5008 emission. The median velocity width of the [OIII] emission line is 1540 kms^-1, increasing with increasing quasar luminosity. Broad, blue-shifted wings are seen in the [OIII] profiles of 42 per cent of the sample. Rest-frame ultraviolet spectra with well-characterised CIV 1550 emission line properties are available for more than 210 quasars, allowing an investigation of the relationship between the Broad Line Region (BLR) and Narrow Line Region (NLR) emission properties. The [OIII] blueshift is correlated with CIV blueshift, even when the dependence of both quantities on quasar luminosity has been taken into account. A strong anti-correlation between the [OIII] equivalent width (EW) and CIV blueshift also exists. Furthermore, [OIII] is very weak, with EW<1A, in ~10 per cent of the sample, a factor of 10 higher compared to quasars at lower luminosities and redshifts. If the [OIII] emission originates in an extended NLR, the observations suggest that quasar-driven winds are capable of influencing the host-galaxy environment out to kilo-parsec scales. The mean kinetic power of the ionised gas outflows is then 10^44.7 erg s^-1, which is ~0.15 per cent of the bolometric luminosity of the quasar. These outflow efficiencies are broadly consistent with those invoked in current active galactic nuclei feedback models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا