Do you want to publish a course? Click here

Quantum illumination with noisy probes: Conditional advantages of non-Gaussianity

316   0   0.0 ( 0 )
 Added by Rivu Gupta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entangled states like two-mode squeezed vacuum states are known to give quantum advantage in the illumination protocol, a method to detect a weakly reflecting target submerged in a thermal background. We use non-Gaussian photon-added and subtracted states as probes for the single-shot quantum illumination both in the presence and absence of noise. Based on the difference between the Chernoff bounds obtained with the coherent state and the non-Gaussian state having equal signal strengths, whose positive values are referred to as a quantum advantage in illumination, we classify the performance of non-Gaussian states, when photons are added (subtracted) in (from) a single mode or in (from) both the modes. We highlight the hierarchy among Gaussian and non-Gaussian states obtained via this method, which is compatible with correlations per unit signal strength. Interestingly, such hierarchy is different when comparisons are made only using the Chernoff bounds. The entire analysis is performed in presence of different noisy apparatus like faulty twin-beam generator, imperfect photon addition or subtraction as well as with noisy non-Gaussian probe states.



rate research

Read More

Quantum illumination (QI) promises unprecedented performances in target detection but there are various problems surrounding its implementation. Where target ranging is a concern, signal and idler recombination forms a crucial barrier to the protocols success. This could potentially be mitigated if performing a measurement on the idler mode could still yield a quantum advantage. In this paper we investigate the QI protocol for a generically correlated Gaussian source and study the phase-conjugating (PC) receiver, deriving the associated SNR in terms of the signal and idler energies, and their cross-correlations, which may be readily adapted to incorporate added noise due to Gaussian measurements. We confirm that a heterodyne measurement performed on the idler mode leads to a performance which asymptotically approaches that of a coherent state with homodyne detection. However, if the signal mode is affected by heterodyne but the idler mode is maintained clean, the performance asymptotically approaches that of the PC receiver without any added noise.
Quantum illumination is the task of determining the presence of an object in a noisy environment. We determine the optimal continuous variable states for quantum illumination in the limit of zero object reflectivity. We prove that the optimal single mode state is a coherent state, while the optimal two mode state is the two-mode squeezed-vacuum state. We find that these probes are not optimal at non-zero reflectivity, but remain near optimal. This demonstrates the viability of the continuous variable platform for an experimentally accessible, near optimal quantum illumination implementation.
56 - Camille L Latune 2021
Unitary drivings of quantum systems are ubiquitous in experiments and applications of quantum mechanics and the underlying energetic aspects, particularly relevant in quantum thermodynamics, are receiving growing attention. We investigate energetic advantages in unitary driving obtained from initial non-thermal states. We introduce the non-cyclic ergotropy to quantify the energetic gains, from which coherent (coherence-based) and incoherent (population-based) contributions are identified. In particular, initial quantum coherences appear to be always beneficial whereas non-passive population distributions not systematically. Additionally, these energetic gains are accessible only through non-adiabatic dynamics, contrasting with the usual optimality of adiabatic dynamics for initial thermal states. Finally, following frameworks established in the context of shortcut-to-adiabaticity, the energetic cost related to the implementation of the optimal drives are analysed and, in most situations, are found to be smaller than the energetic cost associated with shortcut-to-adiabaticity. We treat explicitly the example of a two-level system and show that energetic advantages increase with larger initial coherences, illustrating the interplay between initial coherences and the ability of the dynamics to consume and use coherences.
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These systems are often referred to as non-Markovian systems. After a brief summary of different measures of non-Markovianity that have been introduced over the last few years we restrict our analysis to the investigation of information flow between system and environment. Within this framework we introduce an important application of non-Markovianity, namely its use as a quantum probe of complex quantum systems. To illustrate this point we consider quantum probes of ultracold gases, spin chains, and trapped ion crystals and show how properties of these systems can be extracted by means of non-Markovianity measures.
No-cloning theorem, a profound fundamental principle of quantum mechanics, also provides a crucial practical basis for secure quantum communication. The security of communication can be ultimately guaranteed if the output fidelity via communication channel is above the no-cloning bound (NCB). In quantum communications using continuous-variable (CV) systems, Gaussian states, more specifically, coherent states have been widely studied as inputs, but less is known for non-Gaussian states. We aim at exploring quantum communication covering CV states comprehensively with distinct sets of unknown states properly defined. Our main results here are (i) to establish the NCB for a broad class of quantum non-Gaussian states including Fock states, their superpositions and Schrodinger-cat states and (ii) to examine the relation between NCB and quantum non-Gaussianity (QNG). We find that NCB typically decreases with QNG. Remarkably, this does not mean that quantum non-Gaussian states are less demanding for secure communication. By extending our study to mixed-state inputs, we demonstrate that QNG specifically in terms of Wigner negativity requires more resources to achieve output fidelity above NCB in CV teleportation. The more non-Gaussian, the harder to achieve secure communication, which can have crucial implications for CV quantum communications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا