No Arabic abstract
There are a range of metrics that can be applied to the artifacts produced by procedural content generation, and several of them come with qualitative claims. In this paper, we adapt a range of existing PCG metrics to generated Minecraft settlements, develop a few new metrics inspired by PCG literature, and compare the resulting measurements to existing human evaluations. The aim is to analyze how those metrics capture human evaluation scores in different categories, how the metrics generalize to another game domain, and how metrics deal with more complex artifacts. We provide an exploratory look at a variety of metrics and provide an information gain and several correlation analyses. We found some relationships between human scores and metrics counting specific elements, measuring the diversity of blocks and measuring the presence of crafting materials for the present complex blocks.
This article outlines what we learned from the first year of the AI Settlement Generation Competition in Minecraft, a competition about producing AI programs that can generate interesting settlements in Minecraft for an unseen map. This challenge seeks to focus research into adaptive and holistic procedural content generation. Generating Minecraft towns and villages given existing maps is a suitable task for this, as it requires the generated content to be adaptive, functional, evocative and aesthetic at the same time. Here, we present the results from the first iteration of the competition. We discuss the evaluation methodology, present the different technical approaches by the competitors, and outline the open problems.
The GDMC AI settlement generation challenge is a PCG competition about producing an algorithm that can create an interesting Minecraft settlement for a given map. This paper contains a collection of written experiences with this competition, by participants, judges, organizers and advisors. We asked people to reflect both on the artifacts themselves, and on the competition in general. The aim of this paper is to offer a shareable and edited collection of experiences and qualitative feedback - which seem to contain a lot of insights on PCG and computational creativity, but would otherwise be lost once the output of the competition is reduced to scalar performance values. We reflect upon some organizational issues for AI competitions, and discuss the future of the GDMC competition.
We present two new metrics for evaluating generative models in the class-conditional image generation setting. These metrics are obtained by generalizing the two most popular unconditional metrics: the Inception Score (IS) and the Frechet Inception Distance (FID). A theoretical analysis shows the motivation behind each proposed metric and links the novel metrics to their unconditional counterparts. The link takes the form of a product in the case of IS or an upper bound in the FID case. We provide an extensive empirical evaluation, comparing the metrics to their unconditional variants and to other metrics, and utilize them to analyze existing generative models, thus providing additional insights about their performance, from unlearned classes to mode collapse.
In this document we describe a rationale for a research program aimed at building an open assistant in the game Minecraft, in order to make progress on the problems of natural language understanding and learning from dialogue.
Pre-training Reinforcement Learning agents in a task-agnostic manner has shown promising results. However, previous works still struggle in learning and discovering meaningful skills in high-dimensional state-spaces, such as pixel-spaces. We approach the problem by leveraging unsupervised skill discovery and self-supervised learning of state representations. In our work, we learn a compact latent representation by making use of variational and contrastive techniques. We demonstrate that both enable RL agents to learn a set of basic navigation skills by maximizing an information theoretic objective. We assess our method in Minecraft 3D pixel maps with different complexities. Our results show that representations and conditioned policies learned from pixels are enough for toy examples, but do not scale to realistic and complex maps. To overcome these limitations, we explore alternative input observations such as the relative position of the agent along with the raw pixels.