Do you want to publish a course? Click here

Entanglement recycled quantum key distribution scheme without sifting over arbitrary long distance

86   0   0.0 ( 0 )
 Added by Hao Shu
 Publication date 2021
  fields Physics
and research's language is English
 Authors Hao Shu




Ask ChatGPT about the research

Quantum key distribution(QKD) is an important area in quantum information theory. Nowadays, there are many protocols such as BB84 protocol, Lo-Chaus protocol and GR10 protocol. They usually require legitimated parties have the ability to create particles, using a sifting procedures (BB84, GR10), or must destroy entangled states (Lo-Chau). In this paper, we give a QKD scheme which can recycle entangled states and need not to run sifting procedures. The protocol use teleportation and mutual unbiased bases of qudits. Moreover, The scheme can be modified to add a third party who assumes all the states creating procedures and so the communicated parties need not to create states. This is in fact an entanglement distribution protocol. Also, the protocol can be modified for distributing key over arbitrary long distance. We compare our protocol with the previous protocols and discuss the security of it by corresponding to BB84 protocol.



rate research

Read More

Quantum key distribution provides secure keys resistant to code-breaking quantum computers. The continuous-variable version of quantum key distribution offers the advantages of higher secret key rates in metropolitan areas, as well as the use of standard telecom components that can operate at room temperature. However, the transmission distance of these systems (compared with discrete-variable systems) are currently limited and considered unsuitable for long-distance distribution. Herein, we report the experimental results of long distance continuous-variable quantum key distribution over 202.81 km of ultralow-loss optical fiber by suitably controlling the excess noise and employing highly efficient reconciliation procedures. This record-breaking implementation of the continuous-variable quantum key distribution doubles the previous distance record and shows the road for long-distance and large-scale secure quantum key distribution using room-temperature standard telecom components.
Quantum key distribution (QKD) is one of the most important subjects in quantum information theory. There are two kinds of QKD protocols, prepare-measure protocols and entanglement-based protocols. For long-distance communications in noisy environments, entanglement-based protocols might be more reliable since they could be assisted with distillation procedures to prevent from noises. In this paper, we study the entanglement-based QKD over certain noisy channels and present schemes against collective noises, including collective dephasing and collective rotation, Pauli noises, amplitude damping noises, phase damping noises and mixtures of them. We focus on how to implement QKD protocols over noisy channels as in noiseless ones without errors. We also analyze the efficiency of the schemes, demonstrating that they could be more efficient than the standard entanglement-based QKD scheme.
204 - D. Stucki , N. Walenta , F. Vannel 2009
We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km.
Quantum key distribution (QKD) permits information-theoretically secure transmission of digital encryption keys, assuming that the behaviour of the devices employed for the key exchange can be reliably modelled and predicted. Remarkably, no assumptions have to be made on the capabilities of an eavesdropper other than that she is bounded by the laws of Nature, thus making the security of QKD unconditional. However, unconditional security is hard to achieve in practice. For example, any experimental realisation can only collect finite data samples, leading to vulnerabilities against coherent attacks, the most general class of attacks, and for some protocols the theoretical proof of robustness against these attacks is still missing. For these reasons, in the past many QKD experiments have fallen short of implementing an unconditionally secure protocol and have instead considered limited attacking capabilities by the eavesdropper. Here, we explore the security of QKD against coherent attacks in the most challenging environment: the long-distance transmission of keys. We demonstrate that the BB84 protocol can provide positive key rates for distances up to 240 km without multiplexing of conventional signals, and up to 200 km with multiplexing. Useful key rates can be achieved even for the longest distances, using practical thermo-electrically cooled single-photon detectors.
To realize the practical implementation of device-independent quantum key distribution~(DIQKD), the main difficulty is that its security relies on the detection-loophole-free violation of the Clauser-Horne-Shimony-Holt~(CHSH) inequality, i.e. the CHSH value $S>2$, which is easily destroyed by the loss in transmission channels. One of the simplest methods to circumvent it is to utilize the entanglement swapping relay~(ESR). Here, we propose and experimentally test an improved version of the heralded nonlocality amplifier protocol based on the ESR, and numerically show that our scheme is much more robust against the transmission loss than the previously developed protocol. In the experiment, we observe that the obtained probability distribution is in excellent agreement with those expected by the numerical simulation with experimental parameters which are precisely characterized in a separate measurement. Moreover, we experimentally estimate the nonlocality of the heralded state after the transmission of 10~dB loss just before detection. It is estimated to be $S=2.104>2$, which indicates that our final state possesses strong nonlocality even with various experimental imperfections. Our result clarifies an important benchmark of the ESR protocol, and paves the way towards the long-distance realization of the loophole-free CHSH-violation as well as DIQKD.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا