No Arabic abstract
We predict that in a twisted homobilayer of transition-metal dichalcogenide MoS$_2$, spin-orbit coupling in the conduction band states from $pm K$ valleys can give rise to moir{e} flat bands with nonzero Chern numbers in each valley. The nontrivial band topology originates from a unique combination of angular twist and local mirror symmetry breaking in each individual layer, which results in unusual skyrmionic spin textures in momentum space with skyrmion number $mathcal{S} = pm 2$. Our Hartree-Fock analysis further suggests that density-density interactions generically drive the system at $1/2$-filling into a valley-polarized state, which realizes a correlated quantum anomalous Hall state with Chern number $mathcal{C} = pm 2$. Effects of displacement fields are discussed with comparison to nontrivial topology from layer-pseudospin magnetic fields.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alphaapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
Moire heterobilayer transition metal dichalcogenides (TMDs) emerge as an ideal system for simulating the single-band Hubbard model and interesting correlated phases have been observed in these systems. Nevertheless, the moire bands in heterobilayer TMDs were believed to be topologically trivial. Recently, it was reported that both a quantum valley Hall insulating state at filling $ u=2$ (two holes per moire unit cell) and a valley polarized quantum anomalous Hall state at filling $ u=1$ were observed in AB stacked moire MoTe$_2$/WSe$_2$ heterobilayers. However, how the topologically nontrivial states emerge is not known. In this work, we propose that the pseudo-magnetic fields induced by lattice relaxation in moire MoTe$_2$/WSe$_2$ heterobilayers could naturally give rise to moire bands with finite Chern numbers. We show that a time-reversal invariant quantum valley Hall insulator is formed at full-filing $ u=2$, when two moire bands with opposite Chern numbers are filled. At half-filling $ u=1$, Coulomb interaction lifts the valley degeneracy and results in a valley polarized quantum anomalous Hall state, as observed in the experiment. Our theory identifies a new way to achieve topologically non-trivial states in heterobilayer TMD materials.
Simultaneous transport and scanning nanoSQUID-on-tip magnetic imaging studies in Cr-(Bi,Sb)$_2$Te$_3$ modulation-doped films reveal the presence of superparamagnetic order within the quantum anomalous Hall regime. In contrast to the expectation that a long-range ferromagnetic order is required for establishing the quantum anomalous Hall state, superparamagnetic dynamics of weakly interacting nanoscale magnetic islands is observed both in the plateau transition regions as well as within the fully quantized C=$pm$1 Chern plateaus. Modulation doping of the topological insulator films is found to give rise to significantly larger superparamagnetic islands as compared to uniform magnetic doping, evidently leading to enhanced robustness of the quantum anomalous Hall effect. Nonetheless, even in this more robust quantum state, attaining full quantization of transport coefficients requires magnetic alignment of at least 95% of the superparamagnetic islands. The superparamagnetic order is also found within the incipient C=0 zero Hall plateau, which may host an axion state if the top and bottom magnetic layers are magnetized in opposite directions. In this regime, however, a significantly lower level of island alignment is found in our samples, hindering the formation of the axion state. Comprehension and control of superparamagnetic dynamics is thus a key factor in apprehending the fragility of the quantum anomalous Hall state and in enhancing the endurance of the different quantized states to higher temperatures for utilization of robust topological protection in novel devices.
Efficient generation of spin-orbit torques (SOTs) is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall conductivity, low resistivity, high stabilities, and the ability to be compatible with CMOS circuits. However, pure clean-limit Pt with low resistivity still provides a low damping-like spin-orbit torque efficiency, which limits its practical applications. The efficiency of spin-orbit torque in Pt-based magnetic heterostructures can be improved considerably by increasing the spin Hall ratio of Pt and spin transmissivity of the interfaces. Here we reviews recent advances in understanding the physics of spin current generation, interfacial spin transport, and the metrology of spin-orbit torques, and summarize progress towards the goal of Pt-based spin-orbit torque memories and logic that are fast, efficient, reliable, scalable, and non-volatile.
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect has been realized in magnetic topological insulators (TIs) and magic-angle twisted bilayer graphene. Despite considerable experimental efforts, the zero magnetic field QAH effect has so far been realized only for C = 1. Here we used molecular beam epitaxy to fabricate magnetic TI multilayers and realized the QAH effect with tunable Chern number C up to 5. The Chern number of these QAH insulators is tuned by varying the magnetic doping concentration or the thickness of the interior magnetic TI layers in the multilayer samples. A theoretical model is developed to understand our experimental observations and establish phase diagrams for QAH insulators with tunable Chern numbers. The realization of QAH insulators with high tunable Chern numbers facilitates the potential applications of dissipationless chiral edge currents in energy-efficient electronic devices and opens opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.