No Arabic abstract
Accelerating particles to high energies in plasma wakefields is considered to be a promising technique with good energy efficiency and high gradient. While important progress has been made in plasma-based electron acceleration, positron acceleration in plasma has been scarcely studied and a fully self-consistent and optimal scenario has not yet been identified. For high energy physics applications where an electron-positron collider would be desired, the ability to accelerate positrons in plasma wakefields is however paramount. Here we show that the preservation of beam quality can be compromised in a plasma wakefield loaded with a positron beam, and a trade-off between energy efficiency and beam quality needs to be found. For electron beams driving linear plasma wakefields, we have found that despite the transversely nonlinear focusing force induced by positron beam loading, the bunch quickly evolves toward an equilibrium distribution with limited emittance growth. Particle-in-cell simulations show that for {mu}m-scale normalized emittance, the growth of uncorrelated energy spread sets an important limit. Our results demonstrate that the linear or moderately nonlinear regimes with Gaussian drivers provide a good trade-off, achieving simultaneously energy-transfer efficiencies exceeding 30% and uncorrelated energy spread below 1%, while donut-shaped drivers in the nonlinear regime are more appropriate to accelerate high-charge bunches at higher gradients, at the cost of a degraded trade-off between efficiency and beam quality.
Plasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while maintaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to-date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam. A high charge positron bunch placed at a suitable distance behind the drive bunch can beam-load or flatten the longitudinal wakefield and enhance the transverse focusing force, leading to high-efficiency and narrow energy spread acceleration of the positrons. Three-dimensional quasi-static particle-in-cell (PIC) simulations show that over 30% energy extraction efficiency from the wake to the positrons and 1% level energy spread can be simultaneously obtained, and further optimization is feasible.
Hollow plasma channels are attractive for lepton acceleration because they provide intrinsic emittance preservation regimes. However, beam breakup instabilities dominate the dynamics. Here, we show that thin, warm hollow channels can sustain large-amplitude plasma waves ready for high-quality positron acceleration. We verify that the combination of warm electrons and thin hollow channel enables positron focusing structures. Such focusing wakefields unlock beam breakup damping mechanisms. We demonstrate that such channels emerge self-consistently during the long-term plasma dynamics in the blowouts regime aftermath, allowing for experimental demonstration.
Wakefield particle acceleration in hollow plasma channels is under extensive study nowadays. Here we consider an externally magnetized plasma layer (external magnetic field of arbitrary magnitude is along the structure axis) and investigate wakefields generated by a point charge passing along the layer axis.
We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that unused wakefield energy can be removed by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multi-kilohertz repetition rates. This article was published in Physical Review Letters 119, 044802 on 27 July 2017. DOI: 10.1103/PhysRevLett.119.044802 Copyright 2017 American Physical Society.
It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.