No Arabic abstract
We use a Monte Carlo radiative transfer model (MCRTM) to simulate the UBVRI light curves, images and linear polarization of a light echo from supernova SN$~$1987A in the Large Magellanic Cloud (LMC) using various dust cloud shapes, sizes, and optical properties. We compare the theoretical simulations to the observations of AT2019xis, a light echo detected at a large angular distance (4.05$^{}$) from SN$~$1987A. We estimate the size and optical thickness of the dust cloud based on the simulation results and the observations of Optical Gravitational Lensing Experiment (OGLE-IV) Transient Detection System (OTDS) I-band light curve. The mass of the dust cloud is calculated using the estimated size, optical thickness and extinction coefficient. If the dust cloud is assumed to correspond to a gas-to-dust ratio of 300, the total mass of the dust cloud is approximately 7.8-9.3 $M_{odot}$. Based on these theoretical models, we show that the morphological shapes of the light echoes in the wavelength range in or shorter than the U-band to be very different from those in the longer wavelength bands, and the difference carries important information on the early UV radiation of SN$~$1987A.
The possible detection of a compact object in the remnant of SN 1987A presents an unprecedented opportunity to follow its early evolution. The suspected detection stems from an excess of infrared emission from a dust blob near the compact objects predicted position. The infrared excess could be due to the decay of isotopes like 44Ti, accretion luminosity from a neutron star or black hole, magnetospheric emission or a wind originating from the spindown of a pulsar, or thermal emission from an embedded, cooling neutron star (NS 1987A). It is shown that the last possibility is the most plausible as the other explanations are disfavored by other observations and/or require fine-tuning of parameters. Not only are there indications the dust blob overlaps the predicted location of a kicked compact remnant, but its excess luminosity also matches the expected thermal power of a 30 year old neutron star. Furthermore, models of cooling neutron stars within the Minimal Cooling paradigm readily fit both NS 1987A and Cas A, the next-youngest known neutron star. If correct, a long heat transport timescale in the crust and a large effective stellar temperature are favored, implying relatively limited crustal n-1S0 superfluidity and an envelope with a thick layer of light elements, respectively. If the locations dont overlap, then pulsar spindown or accretion might be more likely, but the pulsars period and magnetic field or the accretion rate must be rather finely tuned. In this case, NS 1987A may have enhanced cooling and/or a heavy-element envelope.
The recent identification of the first complex chiral molecule, propylene oxide (PrO) in space opens up a new window to further study the origin of homochirality on the Earth. There are some recent studies to explain the formation of PrO however additional studies on the formation of this species are needed for better understanding. We seek to prepare a complete reaction network to study the formation of propylene oxide in the astrophysically relevant conditions. Based on our results, a detailed radiative transfer modeling has been carried out to propose some more transitions which would potentially be targeted in the millimeter wave domain. Gas-grain chemical network was used to explain the observed abundance of PrO in a cold shell surrounding the high-mass star-forming region of Sgr B2. Quantum chemical calculations were employed to study various reaction parameters and to compute multiple vibrational frequencies of PrO. To model the formation of PrO in the observed region, we considered a dark cloud model. Additionally, we used a model to check the feasibility of forming PrO in the hot core region. Some potential transitions in the millimeter wave domain are predicted which could be useful for the future astronomical detection. Radiative transfer modeling has been utilized to extract the physical condition which might be useful to know the properties of the source in detail. Moreover, vibrational transitions of PrO has been provided which could be very useful for the future detection of PrO by the upcoming James Webb Space Telescope (JWST).
We present the discovery of a light echo from SN 2007af, a normal Type Ia supernova (SN Ia) in NGC 5584. Hubble Space Telescope (HST) images taken three years post explosion reveal two separate echoes; an outer echo and extended central region, which we propose as an unresolved inner echo. Multiple images were obtained in the F160W, F350LP, F555W, and F814W using the Wide Field Camera 3. If the outer echo is produced by an interstellar dust sheet perpendicular to the line of sight, it is located ~800 pc in front of the SN. The dust for the inner echo is 0.45 pc < d < 90 pc away from the SN. The inner echo color is consistent with typical interstellar dust wavelength-dependent scattering cross-sections, while the outer echo color does not match the predictions. Both dust sheets, if in the foreground, are optically thin for scattering, with the outer echo sheet thickness consistent with the inferred extinction from peak brightness. Whether the inner echo is from interstellar or circumstellar dust is ambiguous. Overall, the echo characteristics are quite similar to previously observed SN Ia echoes.
The nearby SN 1987A offers a spatially resolved view of the evolution of a young supernova remnant. Here we precent recent Hubble Space Telescope imaging observations of SN 1987A, which we use to study the evolution of the ejecta, the circumstellar equatorial ring (ER) and the increasing emission from material outside the ER. We find that the inner ejecta have been brightening at a gradually slower rate and that the western side has been brighter than the eastern side since ~7000 days. This is expected given that the X-rays from the ER are most likely powering the ejecta emission. At the same time the optical emission from the ER continues to fade linearly with time. The ER is expanding at 680pm 50 km/s, which reflects the typical velocity of transmitted shocks in the dense hotspots. A dozen spots and a rim of diffuse H-alpha emission have appeared outside the ER since 9500 days. The new spots are more than an order of magnitude fainter than the spots in the ER and also fade faster. We show that the spots and diffuse emission outside the ER may be explained by fast ejecta interacting with high-latitude material that extends from the ER toward the outer rings. Further observations of this emission will make it possible to determine the detailed geometry of the high-latitude material and provide insight into the formation of the rings and the mass-loss history of the progenitor.
Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ~8x10^-12 erg s^-1 cm^-2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies <2 keV. Images show a reversal of the east-west asymmetry between 7000 and 8000 days after the explosion. The latest images suggest the southeastern side of the equatorial ring is beginning to fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense equatorial ring, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A.