Hidden and doubly heavy molecular states from interactions $D^{(*)}_{(s)}{bar{D}}^{(*)}_{s}$/$B^{(*)}_{(s)}{bar{B}}^{(*)}_{s}$ and ${D}^{(*)}_{(s)}D_{s}^{(*)}$/${B}^{(*)}_{(s)}B_{s}^{(*)}$


Abstract in English

In this work, we perform a systematical investigation about the possible hidden and doubly heavy molecular states with open and hidden strangeness from interactions of $D^{(*)}{bar{D}}^{(*)}_{s}$/$B^{(*)}{bar{B}}^{(*)}_{s}$, ${D}^{(*)}_{s}{bar{D}}^{(*)}_{s}$/${{B}}^{(*)}_{s}{bar{B}}^{(*)}_{s}$, ${D}^{(*)}D_{s}^{(*)}$/${B}^{(*)}B_{s}^{(*)}$, and $D_{s}^{(*)}D_{s}^{(*)}$/$B_{s}^{(*)}B_{s}^{(*)}$ in a quasipotential Bethe-Salpeter equation approach. The interactions of the systems considered are described within the one-boson-exchange model, which includes exchanges of light mesons and $J/psi/Upsilon$ meson. Possible molecular states are searched for as poles of scattering amplitudes of the interactions considered. The results suggest that recently observed $Z_{cs}(3985)$ can be assigned as a molecular state of $D^*bar{D}_s+Dbar{D}^*_s$, which is a partner of $Z_c(3900)$ state as a $Dbar{D}^*$ molecular state. The calculation also favors the existence of hidden heavy states $D_sbar{D}_s/B_sbar{B}_s$ with spin parity $J^P=0^+$, $D_sbar{D}^*_s/B_sbar{B}^*_s$ with $1^{+}$, and $D^*_sbar{D}^*_s/B^*_sbar{B}^*_s$ with $0^+$, $1^+$, and $2^+$. In the doubly heavy sector, the bound states can be found from the interactions $(D^*D_s+DD^*_s)/(B^*B_s+BB^*_s)$ with $1^+$, $D_sbar{D}_s^*/B_sbar{B}_s^*$ with $1^+$, $D^*D^*_s/B^*B^*_s$ with $1^+$ and $2^+$, and $D^*_sD^*_s/B^*_sB^*_s$ with $1^+$ and $2^+$. Some other interactions are also found attractive, but may be not strong enough to produce a bound state. The results in this work are helpful for understanding the $Z_{cs}(3985)$, and future experimental search for the new molecular states.

Download