We report a new lift force model for intruders in dense, granular shear flows. Our derivation is based on the thermal buoyancy model of Trujillo & Hermann[L. Trujillo and H. J. Herrmann, Physica A 330, 519 (2003).], but takes into account both granular temperature and pressure differences in the derivation of the net buoyancy force acting on the intruder. In a second step the model is extended to take into account also density differences between the intruder and the bed particles. The model predicts very well the rising and sinking of intruders, the lift force acting on intruders as determined by discrete element model (DEM) simulations and the neutral-buoyancy limit of intruders in shear flows. Phenomenologically, we observe a cooling upon the introduction of an intruder into the system. This cooling effect increases with intruder size and explains the sinking of large intruders. On the other hand, the introduction of small to mid-sized intruders, i.e. up to 4 times the bed particle size, leads to a reduction in the granular pressure compared to the hydrostatic pressure, which in turn causes the rising of small to mid-sized intruders.