No Arabic abstract
Historical experimental testing of high-altitude nuclear explosions (HANEs) are known to cause severe and detrimental effects to radio frequency signals and communications infrastructure. In order to study and predict the impact of HANEs, tractable computational approaches are required to model the complex physical processes involved in the detonation wave physics. Modern reduced-order models (ROMs) can enable long-time and many-parameter simulations with minimal computational cost. However, translational and scale invariances inherent to this type of wave propagation problem are known to limit traditional ROM approaches. Specifically, dimensionality reduction methods are typically ineffective in producing low-rank models when invariances are present in the data. In this work, an unsupervised machine learning method is used to discover coordinate systems that make such invariances amenable to traditional dimensionality reduction methods. The method, which has previously been demonstrated on one-dimensional translations, is extended to higher dimensions and additional invariances. A surrogate HANE system, i.e. a HANE-ROM, with one detonation wave is captured well at extremely low-rank. Two detonation-waves are also considered with various amounts of interaction between the waves, with improvements to low-rank models for multiple wave quantities with limited interaction.
A one-dimensional discrete Boltzmann model for detonation simulation is presented. Instead of numerical solving Navier-Stokes equations, this model obtains the information of flow field through numerical solving specially discretized Boltzmann equation. Several classical benchmarks including Sod shock wave tube, Colella explosion problem, and one-dimensional self-sustainable stable detonation are simulated to validate the new model. Based on the new model, the influence of negative temperature coefficient of reaction rate on detonation is further investigated. It is found that an abnormal detonation with two wave heads periodically appears under negative temperature coefficient condition. The causes of the abnormal detonation are analyzed. One typical cycle of the periodic abnormal detonation and its development process are discussed.
There are two main strategies for improving the projection-based reduced order model (ROM) accuracy: (i) improving the ROM, i.e., adding new terms to the standard ROM; and (ii) improving the ROM basis, i.e., constructing ROM bases that yield more accurate ROMs. In this paper, we use the latter. We propose new Lagrangian inner products that we use together with Eulerian and Lagrangian data to construct new Lagrangian ROMs. We show that the new Lagrangian ROMs are orders of magnitude more accurate than the standard Eulerian ROMs, i.e., ROMs that use standard Eulerian inner product and data to construct the ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction). We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs accuracy is entirely due to the novel Lagrangian inner products used to build the Lagrangian ROM basis.
A quasi-one-dimensional analytic model is proposed for the internal fluid of rotating detonation combustors (RDCs). This model uses the shock-tube model that constrains the flow to have only a longitudinal component, while admitting the propagation of the detonation wave in the azimuthal direction. The proposed model is able to compute the thruster performance and two-dimensional distributions of gas properties. The calculation process of the model excludes iterative calculation or space discretization. The case calculations of the hydrogen-air RDC and the ethylene-oxygen RDC are conducted, and the results calculated by the analytic model are compared with those simulated by computational fluid dynamics (CFD). Good agreement has been observed between the results obtained with the proposed model and CFD, in terms of both of the qualitative and quantitative comparisons. The proposed model is simple and fast, and also maintains the fundamental characteristics of RDCs.
The shallow water equations (SWE) are a widely used model for the propagation of surface waves on the oceans. We consider the problem of optimally determining the initial conditions for the one-dimensional SWE in an unbounded domain from a small set of observations of the sea surface height. In the linear case we prove a theorem that gives sufficient conditions for convergence to the true initial conditions. At least two observation points must be used and at least one pair of observation points must be spaced more closely than half the effective minimum wavelength of the energy spectrum of the initial conditions. This result also applies to the linear wave equation. Our analysis is confirmed by numerical experiments for both the linear and nonlinear SWE data assimilation problems. These results show that convergence rates improve with increasing numbers of observation points and that at least three observation points are required for the practically useful results. Better results are obtained for the nonlinear equations provided more than two observation points are used. This paper is a first step in understanding the conditions for observability of the SWE for small numbers of observation points in more physically realistic settings.
Generalizability of machine-learning (ML) based turbulence closures to accurately predict unseen practical flows remains an important challenge. It is well recognized that the ML neural network architecture and training protocol profoundly influence the generalizability characteristics. The objective of this work is to identify the unique challenges in finding the ML closure network hyperparameters that arise due to the inherent complexity of turbulence. Three proxy-physics turbulence surrogates of different degrees of complexity (yet significantly simpler than turbulence physics) are employed. The proxy-physics models mimic some of the key features of turbulence and provide training/testing data at low computational expense. The focus is on the following turbulence features: high dimensionality of flow physics parameter space, non-linearity effects and bifurcations in emergent behavior. A standard fully-connected neural network is used to reproduce the data of simplified proxy-physics turbulence surrogates. Lacking a rigorous procedure to find globally optimal ML neural network hyperparameters, a brute-force parameter-space sweep is performed to examine the existence of locally optimal solution. Even for this simple case, it is demonstrated that the choice of the optimal hyperparameters for a fully-connected neural network is not straightforward when it is trained with the partially available data in parameter space. Overall, specific issues to be addressed are identified, and the findings provide a realistic perspective on the utility of ML turbulence closures for practical applications.