Do you want to publish a course? Click here

Context-Aware Attention-Based Data Augmentation for POI Recommendation

98   0   0.0 ( 0 )
 Added by Yang Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With the rapid growth of location-based social networks (LBSNs), Point-Of-Interest (POI) recommendation has been broadly studied in this decade. Recently, the next POI recommendation, a natural extension of POI recommendation, has attracted much attention. It aims at suggesting the next POI to a user in spatial and temporal context, which is a practical yet challenging task in various applications. Existing approaches mainly model the spatial and temporal information, and memorize historical patterns through users trajectories for recommendation. However, they suffer from the negative impact of missing and irregular check-in data, which significantly influences the model performance. In this paper, we propose an attention-based sequence-to-sequence generative model, namely POI-Augmentation Seq2Seq (PA-Seq2Seq), to address the sparsity of training set by making check-in records to be evenly-spaced. Specifically, the encoder summarises each check-in sequence and the decoder predicts the possible missing check-ins based on the encoded information. In order to learn time-aware correlation among user history, we employ local attention mechanism to help the decoder focus on a specific range of context information when predicting a certain missing check-in point. Extensive experiments have been conducted on two real-world check-in datasets, Gowalla and Brightkite, for performance and effectiveness evaluation.



rate research

Read More

159 - Yang Li , Tong Chen , Hongzhi Yin 2021
Being an indispensable component in location-based social networks, next point-of-interest (POI) recommendation recommends users unexplored POIs based on their recent visiting histories. However, existing work mainly models check-in data as isolated POI sequences, neglecting the crucial collaborative signals from cross-sequence check-in information. Furthermore, the sparse POI-POI transitions restrict the ability of a model to learn effective sequential patterns for recommendation. In this paper, we propose Sequence-to-Graph (Seq2Graph) augmentation for each POI sequence, allowing collaborative signals to be propagated from correlated POIs belonging to other sequences. We then devise a novel Sequence-to-Graph POI Recommender (SGRec), which jointly learns POI embeddings and infers a users temporal preferences from the graph-augmented POI sequence. To overcome the sparsity of POI-level interactions, we further infuse category-awareness into SGRec with a multi-task learning scheme that captures the denser category-wise transitions. As such, SGRec makes full use of the collaborative signals for learning expressive POI representations, and also comprehensively uncovers multi-level sequential patterns for user preference modelling. Extensive experiments on two real-world datasets demonstrate the superiority of SGRec against state-of-the-art methods in next POI recommendation.
Grocery recommendation is an important recommendation use-case, which aims to predict which items a user might choose to buy in the future, based on their shopping history. However, existing methods only represent each user and item by single deterministic points in a low-dimensional continuous space. In addition, most of these methods are trained by maximizing the co-occurrence likelihood with a simple Skip-gram-based formulation, which limits the expressive ability of their embeddings and the resulting recommendation performance. In this paper, we propose the Variational Bayesian Context-Aware Representation (VBCAR) model for grocery recommendation, which is a novel variational Bayesian model that learns the user and item latent vectors by leveraging basket context information from past user-item interactions. We train our VBCAR model based on the Bayesian Skip-gram framework coupled with the amortized variational inference so that it can learn more expressive latent representations that integrate both the non-linearity and Bayesian behaviour. Experiments conducted on a large real-world grocery recommendation dataset show that our proposed VBCAR model can significantly outperform existing state-of-the-art grocery recommendation methods.
Next Point-of-Interest (POI) recommendation is a longstanding problem across the domains of Location-Based Social Networks (LBSN) and transportation. Recent Recurrent Neural Network (RNN) based approaches learn POI-POI relationships in a local view based on independent user visit sequences. This limits the models ability to directly connect and learn across users in a global view to recommend semantically trained POIs. In this work, we propose a Spatial-Temporal-Preference User Dimensional Graph Attention Network (STP-UDGAT), a novel explore-exploit model that concurrently exploits personalized user preferences and explores new POIs in global spatial-temporal-preference (STP) neighbourhoods, while allowing users to selectively learn from other users. In addition, we propose random walks as a masked self-attention option to leverage the STP graphs structures and find new higher-order POI neighbours during exploration. Experimental results on six real-world datasets show that our model significantly outperforms baseline and state-of-the-art methods.
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. That is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.
Lawyers and judges spend a large amount of time researching the proper legal authority to cite while drafting decisions. In this paper, we develop a citation recommendation tool that can help improve efficiency in the process of opinion drafting. We train four types of machine learning models, including a citation-list based method (collaborative filtering) and three context-based methods (text similarity, BiLSTM and RoBERTa classifiers). Our experiments show that leveraging local textual context improves recommendation, and that deep neural models achieve decent performance. We show that non-deep text-based methods benefit from access to structured case metadata, but deep models only benefit from such access when predicting from context of insufficient length. We also find that, even after extensive training, RoBERTa does not outperform a recurrent neural model, despite its benefits of pretraining. Our behavior analysis of the RoBERTa model further shows that predictive performance is stable across time and citation classes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا