Experience-Driven PCG via Reinforcement Learning: A Super Mario Bros Study


Abstract in English

We introduce a procedural content generation (PCG) framework at the intersections of experience-driven PCG and PCG via reinforcement learning, named ED(PCG)RL, EDRL in short. EDRL is able to teach RL designers to generate endless playable levels in an online manner while respecting particular experiences for the player as designed in the form of reward functions. The framework is tested initially in the Super Mario Bros game. In particular, the RL designers of Super Mario Bros generate and concatenate level segments while considering the diversity among the segments. The correctness of the generation is ensured by a neural net-assisted evolutionary level repairer and the playability of the whole level is determined through AI-based testing. Our agents in this EDRL implementation learn to maximise a quantification of Kosters principle of fun by moderating the degree of diversity across level segments. Moreover, we test their ability to design fun levels that are diverse over time and playable. Our proposed framework is capable of generating endless, playable Super Mario Bros levels with varying degrees of fun, deviation from earlier segments, and playability. EDRL can be generalised to any game that is built as a segment-based sequential process and features a built-in compressed representation of its game content.

Download