Do you want to publish a course? Click here

Powerfree sums of proper divisors

61   0   0.0 ( 0 )
 Added by Paul Pollack
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $s(n):= sum_{dmid n,~d<n} d$ denote the sum of the proper divisors of $n$. It is natural to conjecture that for each integer $kge 2$, the equivalence [ text{$n$ is $k$th powerfree} Longleftrightarrow text{$s(n)$ is $k$th powerfree} ] holds almost always (meaning, on a set of asymptotic density $1$). We prove this for $kge 4$.



rate research

Read More

We consider the distribution in residue classes modulo primes $p$ of Eulers totient function $phi(n)$ and the sum-of-proper-divisors function $s(n):=sigma(n)-n$. We prove that the values $phi(n)$, for $nle x$, that are coprime to $p$ are asymptotically uniformly distributed among the $p-1$ coprime residue classes modulo $p$, uniformly for $5 le p le (log{x})^A$ (with $A$ fixed but arbitrary). We also show that the values of $s(n)$, for $n$ composite, are uniformly distributed among all $p$ residue classes modulo every $ple (log{x})^A$. These appear to be the first results of their kind where the modulus is allowed to grow substantially with $x$.
202 - Simon Griffiths 2010
A $k$-sum of a set $Asubseteq mathbb{Z}$ is an integer that may be expressed as a sum of $k$ distinct elements of $A$. How large can the ratio of the number of $(k+1)$-sums to the number of $k$-sums be? Writing $kwedge A$ for the set of $k$-sums of $A$ we prove that [ frac{|(k+1)wedge A|}{|kwedge A|}, le , frac{|A|-k}{k+1} ] whenever $|A|ge (k^{2}+7k)/2$. The inequality is tight -- the above ratio being attained when $A$ is a geometric progression. This answers a question of Ruzsa.
139 - Ce Xu 2020
We define a new kind of classical digamma function, and establish its some fundamental identities. Then we apply the formulas obtained, and extend tools developed by Flajolet and Salvy to study more general Euler type sums. The main results of Flajolet and Salvys paper cite{FS1998} are the immediate corollaries of main results in this paper. Furthermore, we provide some parameterized extensions of Ramanujan-type identities that involve hyperbolic series. Some interesting new consequences and illustrative examples are considered.
We develop a new method for studying sums of Kloosterman sums related to the spectral exponential sum. As a corollary, we obtain a new proof of the estimate of Soundararajan and Young for the error term in the prime geodesic theorem.
We investigate various questions concerning the reciprocal sum of divisors, or prime divisors, of the Mersenne numbers $2^n-1$. Conditional on the Elliott-Halberstam Conjecture and the Generalized Riemann Hypothesis, we determine $max_{nle x} sum_{p mid 2^n-1} 1/p$ to within $o(1)$ and $max_{nle x} sum_{dmid 2^n-1}1/d$ to within a factor of $1+o(1)$, as $xtoinfty$. This refines, conditionally, earlier estimates of ErdH{o}s and ErdH{o}s-Kiss-Pomerance. Conditionally (only) on GRH, we also determine $sum 1/d$ to within a factor of $1+o(1)$ where $d$ runs over all numbers dividing $2^n-1$ for some $nle x$. This conditionally confirms a conjecture of Pomerance and answers a question of Murty-Rosen-Silverman. Finally, we show that both $sum_{pmid 2^n-1} 1/p$ and $sum_{dmid 2^n-1}1/d$ admit continuous distribution functions in the sense of probabilistic number theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا