Do you want to publish a course? Click here

New physics in double Higgs production at NLO

100   0   0.0 ( 0 )
 Added by Bo-Yan Huang
 Publication date 2021
  fields
and research's language is English
 Authors Bo-Yan Huang




Ask ChatGPT about the research

After observing the Higgs boson by the ATLAS and CMS experiments at the LHC, accurate measurements of its properties, which allow us to study the electroweak symmetry breaking mechanism, become a high priority for particle physics. The most promising of extracting the Higgs self-coupling at hadron colliders is by examining the double Higgs production, especially in the $b bar{b} gamma gamma$ channel. In this work, we presented full loop calculation for both SM and New Physics effects of the Higgs pair production to next-to-leading-order (NLO), including loop-induced processes $ggto HH$, $ggto HHg$, and $qg to qHH$. We also included the calculation of the corrections from diagrams with only one QCD coupling in $qg to qHH$, which was neglected in the previous studies. With the latest observed limit on the HH production cross-section, we studied the constraints on the effective Higgs couplings for the LHC at center-of-mass energies of 14 TeV and a provisional 100 TeV proton collider within the Future-Circular-Collider (FCC) project. To obtain results better than using total cross-section alone, we focused on the $b bar{b} gamma gamma$ channel and divided the differential cross-section into low and high bins based on the total invariant mass and $p_{T}$ spectra. The new physics effects are further constrained by including extra kinematic information. However, some degeneracy persists, as shown in previous studies, especially in determining the Higgs trilinear coupling. Our analysis shows that the degeneracy is reduced by including the full NLO corrections.



rate research

Read More

72 - S. Dawson , I. M. Lewis 2015
Higgs pair production at the LHC from gluon fusion is small in the Standard Model, but can be enhanced in models where a resonant enhancement is allowed. We examine the effect of a resonant contribution from a second scalar arising in a model with a gauge singlet scalar field in addition to the usual SU(2) scalar doublet, with mass up to $M_H$~600 GeV and discuss the interference effects in double Higgs production. We compute the NLO QCD corrections in the large $m_t$ limit and show that they can significantly distort kinematic distributions near the resonance peak.
146 - J.Smith 2002
We report on results for the NLO corrected differential distributions $dsigma/dp_T$ and $dsigma/dy$ for the process $p + pto H + X$, where $p_T$ and $y$ are the transverse momentum and rapidity of the Higgs-boson $H$ respectively and $X$ denotes the inclusive hadronic state. All QCD partonic subprocesses have been included. The computation is carried out in the limit that the top-quark mass $m_t to infty$. Our calculations reveal that the dominant subprocess is given by $g + g to H + X$ but the reaction $g + q(bar q) to H + X$ is not negligible. Also the $K$-factor representing the ratio between the next-to-leading order and leading order differential distributions varies from 1.4 to 1.7 depending on the kinematic region and choice of parton densities.
We study heavy physics effects on the Higgs production in $gamma gamma $ fusion using the effective Lagrangian approach. We find that the effects coming from new physics may enhance the standard model predictions for the number of events expected in the final states $bar bb$, $WW$, and $ZZ$ up to one order of magnitude, whereas the corresponding number of events for the final state $bar tt$ may be enhanced up to two orders of magnitude.
259 - S. Actis , G. Passarino , C. Sturm 2008
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.
Based on the two Higgs doublet model, we study the effect of Higgs-boson exchange on the (super)heavy quarkonium bar QQ, which induces a strong attractive force between a (super)heavy quark Q and an antiquark bar Q. An interesting application is the decay of (super)heavy quarkonia bar QQ into a Higgs boson associated with gauge bosons. The criterion for making the bar QQ bound state is studied. We also show that non-perturbative effects due to gluonic field fluctuations are rather small in such a heavy quark sector. Possible enhancement for productions and decays of bar QQ bound states made from the fourth generation quark Q is discussed for bar p p (at the Tevatron) and pp (at the LHC) collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا