Combinatorial BLAS 2.0: Scaling combinatorial algorithms on distributed-memory systems


Abstract in English

Combinatorial algorithms such as those that arise in graph analysis, modeling of discrete systems, bioinformatics, and chemistry, are often hard to parallelize. The Combinatorial BLAS library implements key computational primitives for rapid development of combinatorial algorithms in distributed-memory systems. During the decade since its first introduction, the Combinatorial BLAS library has evolved and expanded significantly. This paper details many of the key technical features of Combinatorial BLAS version 2.0, such as communication avoidance, hierarchical parallelism via in-node multithreading, accelerator support via GPU kernels, generalized semiring support, implementations of key data structures and functions, and scalable distributed I/O operations for human-readable files. Our paper also presents several rules of thumb for choosing the right data structures and functions in Combinatorial BLAS 2.0, under various common application scenarios.

Download