In this paper, we consider nearest-neighbor oriented percolation with independent Bernoulli bond-occupation probability on the $d$-dimensional body-centered cubic (BCC) lattice $mathbb{L}^d$ and the set of non-negative integers $mathbb{Z}_+$. Thanks to the nice structure of the BCC lattice, we prove that the infrared bound holds on $mathbb{L}^dtimesmathbb{Z}_+$ in all dimensions $dgeq 9$. As opposed to ordinary percolation, we have to deal with the complex numbers due to asymmetry induced by time-orientation, which makes it hard to estimate the bootstrapping functions in the lace-expansion analysis from above. By investigating the Fourier-Laplace transform of the random-walk Green function and the two-point function, we drive the key properties to obtain the upper bounds and resolve a problematic issue in Nguyen and Yangs bound.