Raman Linewidth Contributions from Four-Phonon and Electron-Phonon Interactions in Graphene


Abstract in English

The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions (EPI) in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing temperature, which is opposite to measurement results. Here, we explicitly consider four-phonon anharmonicity, phonon renormalization, and electron-phonon coupling, and find all to be important to successfully explain both the $G$ peak frequency shift and linewidths in our suspended graphene sample at a wide temperature range. Four-phonon scattering contributes a prominent linewidth that increases with temperature, while temperature dependence from EPI is found to be reversed above a doping threshold ($hbaromega_G/2$, with $omega_G$ being the frequency of the $G$ phonon).

Download