Strongly Minimal Steiner Systems II: Coordinatization and Quasigroups


Abstract in English

We note that a strongly minimal Steiner $k$-Steiner system $(M,R)$ from (Baldwin-Paolini 2020) can be `coordinatized in the sense of (Gantner-Werner 1975) by a quasigroup if $k$ is a prime-power. But for the basic construction this coordinatization is never definable in $(M,R)$. Nevertheless, by refining the construction, if $k$ is a prime power there is a $(2,k)$-variety of quasigroups which is strongly minimal and definably coordinatizes a Steiner $k$-system.

Download