No Arabic abstract
In this paper we discuss the possibility to generate and accelerate proton nanobeams in fully dielectric laser-driven accelerators (p-DLAs). High gradient on-chip optical-power dielectric laser accelerators (DLAs) could represent one of the most promising way towards future miniaturized particle accelerator. A primary challenge for DLAs are small beam apertures having a size of the order of the driving laser wavelength where low charge high-repetition (or also CW) ultralow emittance nanobeams have to be transported. For electrons beams generation and acceleration, intense research activities are ongoing, and several demonstrations have been already obtained by using electrons nanotip (or flat photocathode) sources feeding dielectric microstructures. In this article we aim at the possibility to integrate a nanosource for the generation of a light ion or proton nano-beams suitable for the subsequent acceleration into sub-relativistic (low-beta) p-DLA stages. Such integration includes the idea to use a proton dielectric radiofrequency quadrupole (p-DRFQ) for bridging the gap between the accelerator front-end and the drift-tube and high-beta sections. The paper has been prepared as a white book including state-of-art technologies and new solutions that now put the ambitious frontier of a fully nanostructured proton accelerator into reach. Conceptual studies of p-DLAs here presented could enable table-top proton nano-beams for several applications: proton beam writing, nuclear reaction analysis at sub-micrometer scales, the construction of miniaturized Proton-Boron Nuclear Fusion based Reactors, biological analysis at the micrometer scale, ion beam analysis at the sub-cellular level, mini-beams ion therapy to spare the shallow tissues, proton irradiation of transistors, compact proton linac for neutron generation.
Laser powered dielectric structures achieve high-gradient particle acceleration by taking advantage of modern laser technology capable of producing electric fields in excess of 10GV/m. These fields can drive the bulk dielectric beyond its linear response, and break the phase synchronicity between the accelerating field and the electrons. We show how control of the pulse dispersion can be used to compensate the effect of self-phase modulation and maximize the energy gain in the laser accelerator.In our experiment, a high brightness 8MeV e-beam is used to probe accelerating fields of 1.8GV/m in a grating-reset dielectric structure illuminated by a 45fs laser pulse with a fluence of 0.7J/cm$^2$.
Laser plasma accelerators have the potential to reduce the size of future linacs for high energy physics by more than an order of magnitude, due to their high gradient. Research is in progress at current facilities, including the BELLA PetaWatt laser at LBNL, towards high quality 10 GeV beams and staging of multiple modules, as well as control of injection and beam quality. The path towards high-energy physics applications will likely involve hundreds of such stages, with beam transport, conditioning and focusing. Current research focuses on addressing physics and R&D challenges required for a detailed conceptual design of a future collider. Here, the tools used to model these accelerators and their resource requirements are summarized, both for current work and to support R&D addressing issues related to collider concepts.
The question of suitability of transfer matrix description of electrons traversing grating-type dielectric laser acceleration (DLA) structures is addressed. It is shown that although matrix considerations lead to interesting insights, the basic transfer properties of DLA cells cannot be described by a matrix. A more general notion of a transfer function is shown to be a simple and useful tool for formulating problems of particle dynamics in DLA. As an example, a focusing structure is proposed which works simultaneously for all electron phases.
Using an 800 nm, 45 fs pulse-front-tilted laser we demonstrate a record 315 keV energy gain in a dual grating dielectric laser accelerator (DLA) and average accelerating gradients of 560 MV/m over 0.5 mm. These results open a new regime in DLA characterized by significant evolution of the beam distribution in the longitudinal phase space, corresponding to >1/4 of a synchrotron oscillation. By tilting the laser wavefront we control the resonant velocity of the DLA and observe a net energy gain, indicating that a tapered optical phase could be used to achieve very high energy gain.
The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wake-field acceleration have strongly been promoted during the last decades. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are influenced by the huge magnetic fields of plasma and, thus, how highly polarized beams can be produced. The realization of laser-plasma based accelerators for polarized beams is now being pursued as a joint effort of groups from Forschungszentrum Julich (Germany), University of Crete (Greece), and SIOM Shanghai (China) within the ATHENA consortium. As a first step, we have theoretically investigated and identified the mechanisms that influence the beam polarization in laser-plasma accelerators. We then carried out a set of Particle-in-cell simulations on the acceleration of electrons and proton beams from gaseous and foil targets. We could show that intense polarized beams may be produced if pre-polarized gas targets of high density are employed. In these proceedings we further present that the polarization of protons in HT and HCl gas targets is largely conserved during laser wake-field acceleration, even if the proton energies enter the multi-GeV regime. Such polarized sources for electrons, protons, deuterons and $^{3}$He ions are now being built in Julich. Proof-of-principle measurements at the (multi-)PW laser facilities PHELIX (GSI Darmstadt) and SULF (Shanghai) are in preparation.