No Arabic abstract
We outline a new method suggested by Conway (2016) for solving the two-body problem for solid bodies of spheroidal or ellipsoidal shape. The method is based on integrating the gravitational potential of one body over the surface of the other body. When the gravitational potential can be analytically expressed (as for spheroids or ellipsoids), the gravitational force and mutual gravitational potential can be formulated as a surface integral instead of a volume integral, and solved numerically. If the two bodies are infinitely thin disks, the surface integral has an analytical solution. The method is exact as the force and mutual potential appear in closed-form expressions, and does not involve series expansions with subsequent truncation errors. In order to test the method, we solve the equations of motion in an inertial frame, and run simulations with two spheroids and two infinitely thin disks, restricted to torque-free planar motion. The resulting trajectories display precession patterns typical for non-Keplerian potentials. We follow the conservation of energy and orbital angular momentum, and also investigate how the spheroid model approaches the two cases where the surface integral can be solved analytically, i.e. for point masses and infinitely thin disks.
The discovery of Plutos small moons in the last decade brought attention to the dynamics of the dwarf planets satellites. With such systems in mind, we study a planar $N$-body system in which all the bodies are point masses, except for a single rigid body. We then present a reduced model consisting of a planar $N$-body problem with the rigid body treated as a 1D continuum (i.e. the body is treated as a rod with an arbitrary mass distribution). Such a model provides a good approximation to highly asymmetric geometries, such as the recently observed interstellar asteroid Oumuamua, but is also amenable to analysis. We analytically demonstrate the existence of homoclinic chaos in the case where one of the orbits is nearly circular by way of the Melnikov method, and give numerical evidence for chaos when the orbits are more complicated. We show that the extent of chaos in parameter space is strongly tied to the deviations from a purely circular orbit. These results suggest that chaos is ubiquitous in many-body problems when one or more of the rigid bodies exhibits non-spherical and highly asymmetric geometries. The excitation of chaotic rotations does not appear to require tidal dissipation, obliquity variation, or orbital resonance. Such dynamics give a possible explanation for routes to chaotic dynamics observed in $N$-body systems such as the Pluto system where some of the bodies are highly non-spherical.
In this paper, we study a model of simplified four-body problem called planar two-center-two-body problem. In the plane, we have two fixed centers $Q_1=(-chi,0)$, $Q_2=(0,0)$ of masses 1, and two moving bodies $Q_3$ and $Q_4$ of masses $mull 1$. They interact via Newtonian potential. $Q_3$ is captured by $Q_2$, and $Q_4$ travels back and forth between two centers. Based on a model of Gerver, we prove that there is a Cantor set of initial conditions which lead to solutions of the Hamiltonian system whose velocities are accelerated to infinity within finite time avoiding all early collisions. We consider this model as a simplified model for the planar four-body problem case of the Painlev{e} conjecture.
In this paper, we show that there is a Cantor set of initial conditions in the planar four-body problem such that all four bodies escape to infinity in a finite time, avoiding collisions. This proves the Painlev{e} conjecture for the four-body case, and thus settles the last open case of the conjecture.
The restricted planar four body problem describes the motion of a massless body under the Newtonian gravitational force of other three bodies (the primaries), of which the motion gives us general solutions of the three body problem. A trajectory is called {it oscillatory} if it goes arbitrarily faraway but returns infinitely many times to the same bounded region. We prove the existence of such type of trajectories provided the primaries evolve in suitable periodic orbits.
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that are derived from the Agekyan-Anosova maps and homology radius $R_{mathcal{H}}$. Based on these metrics, we develop detailed procedures to isolate the ergodic interactions and Levy flight interactions. This enables us to study the three-body lifetime distribution in more detail by decomposing it into the individual distributions from the different kinds of interactions. We observe that ergodic interactions follow an exponential decay distribution similar to that of radioactive decay. Meanwhile, Levy flight interactions follow a power-law distribution. Levy flights in fact dominate the tail of the general three-body lifetime distribution, providing conclusive evidence for the speculated connection between power-law tails and Levy flight interactions. We propose a new physically-motivated model for the lifetime distribution of three-body systems and discuss how it can be used to extract information about the underlying ergodic and Levy flight interactions. We discuss mass ejection probabilities in three-body systems in the ergodic limit and compare it to previous ergodic formalisms. We introduce a novel mechanism for a three-body relaxation process and discuss its relevance in general three-body systems.