No Arabic abstract
A precise estimate of allele and haplotype polymorphism is of great interest for theoretical population genetics, but also practical issues, such as bone marrow registries. Allele polymorphism is driven mainly by point mutations, while haplotype polymorphism is also affected by recombination events. Even in the simple case of two loci in a haploid individual, there is currently no good estimate of the number of haplotypes as a function of the mutation and recombination rates. We here propose such an estimate and show that the common approximation that recombination can be treated as mutations is limited to recombination rates of the same order as the mutation rate. Beyond this regime, the total number of haplotypes is much lower than expected from the approximation above. Moreover, in contrast with mutations, the number of haplotypes does not grow linearly with the population size. We apply this new estimate to very large-scale human haplotype frequencies from human populations to show that the current estimated haplotype recombination rate in the HLA region is underestimated. This high recombination rate may be the source of HLA haplotype extreme polymorphism.
I compare two quantum-theoretical approaches to the phenomenon of adaptive mutations, termed here Q-cell and Q-genome. I use fluctuation trapping model as a general framework. I introduce notions of R-error and D-error and argue that the fluctuation trapping model has to employ a correlation between the R- and D- errors. Further, I compare how the two approaches can justify the R-D-error correlation, focusing on the advantages of the Q-cell approach. The positive role of environmentally induced decoherence (EID) on both steps of the adaptation process is emphasized. A starving bacterial cell is proposed to be in an einselected state. The intracellular dynamics in this state has a unitary character and I propose to interpret it as exponential growth in imaginary time, analogously to the commonly considered diffusion interpretation of the Schroedinger equation. Addition of a substrate leads to Wick rotation and a switch from imaginary time reproduction to a real time reproduction regime. Due to the variations at the genomic level (such as base tautomery), the starving cell has to be represented as a superposition of different components, all reproducing in imaginary time. Adidtion of a selective substrate, allowing only one of these components to amplify, will cause Wick rotation and amplification of this component, thus justifying the occurence of the R-D-error correlation. Further ramifications of the proposed ideas for evolutionary theory are discussed.
We build upon our previous analytical results for the Penna model of senescence to include positive mutations. We investigate whether a small but non-zero positive mutation rate gives qualitatively different results to the traditional Penna model in which no positive mutations are considered. We find that the high-lifespan tail of the distribution is radically changed in structure, but that there is not much effect on the bulk of the population. Th e mortality plateau that we found previously for a stochastic generalization of the Penna model is stable to a small positive mutation rate.
A didactic introduction, dated by 1999, to the ideas of the papers arXiv:q-bio/0701050 and arXiv:0704.0034
We investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Our model arises when we incorporate very general recombination mechanisms into a previous model of mutation and selection from Steinsaltz, Evans and Wachter (2005) and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. Our motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging. We establish the existence and uniqueness of the dynamical system, provide conditions for the existence and stability of equilibrium states, and prove that our continuous-time dynamical system is the limit of a sequence of discrete-time infinite population mutation-selection-recombination models in the standard asymptotic regime where selection and mutation are weak relative to recombination and both scale at the same infinitesimal rate in the limit.
Pedigrees are directed acyclic graphs that represent ancestral relationships between individuals in a population. Based on a schematic recombination process, we describe two simple Markov models for sequences evolving on pedigrees - Model R (recombinations without mutations) and Model RM (recombinations with mutations). For these models, we ask an identifiability question: is it possible to construct a pedigree from the joint probability distribution of extant sequences? We present partial identifiability results for general pedigrees: we show that when the crossover probabilities are sufficiently small, certain spanning subgraph sequences can be counted from the joint distribution of extant sequences. We demonstrate how pedigrees that earlier seemed difficult to distinguish are distinguished by counting their spanning subgraph sequences.