Do you want to publish a course? Click here

Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

70   0   0.0 ( 0 )
 Added by Dong Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Successful quantitative investment usually relies on precise predictions of the future movement of the stock price. Recently, machine learning based solutions have shown their capacity to give more accurate stock prediction and become indispensable components in modern quantitative investment systems. However, the i.i.d. assumption behind existing methods is inconsistent with the existence of diverse trading patterns in the stock market, which inevitably limits their ability to achieve better stock prediction performance. In this paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns. Essentially, TRA is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors. Nevertheless, the lack of explicit pattern identifiers makes it quite challenging to train an effective TRA-based model. To tackle this challenge, we further design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term. Experiments on the real-world stock ranking task show that compared to the state-of-the-art baselines, e.g., Attention LSTM and Transformer, the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used in this work are publicly available: https://github.com/microsoft/qlib/tree/main/examples/benchmarks/TRA.



rate research

Read More

The unpredictability and volatility of the stock market render it challenging to make a substantial profit using any generalized scheme. This paper intends to discuss our machine learning model, which can make a significant amount of profit in the US stock market by performing live trading in the Quantopian platform while using resources free of cost. Our top approach was to use ensemble learning with four classifiers: Gaussian Naive Bayes, Decision Tree, Logistic Regression with L1 regularization and Stochastic Gradient Descent, to decide whether to go long or short on a particular stock. Our best model performed daily trade between July 2011 and January 2019, generating 54.35% profit. Finally, our work showcased that mixtures of weighted classifiers perform better than any individual predictor about making trading decisions in the stock market.
Forecasting based on financial time-series is a challenging task since most real-world data exhibits nonstationary property and nonlinear dependencies. In addition, different data modalities often embed different nonlinear relationships which are difficult to capture by human-designed models. To tackle the supervised learning task in financial time-series prediction, we propose the application of a recently formulated algorithm that adaptively learns a mapping function, realized by a heterogeneous neural architecture composing of Generalized Operational Perceptron, given a set of labeled data. With a modified objective function, the proposed algorithm can accommodate the frequently observed imbalanced data distribution problem. Experiments on a large-scale Limit Order Book dataset demonstrate that the proposed algorithm outperforms related algorithms, including tensor-based methods which have access to a broader set of input information.
Systematic financial trading strategies account for over 80% of trade volume in equities and a large chunk of the foreign exchange market. In spite of the availability of data from multiple markets, current approaches in trading rely mainly on learning trading strategies per individual market. In this paper, we take a step towards developing fully end-to-end global trading strategies that leverage systematic trends to produce superior market-specific trading strategies. We introduce QuantNet: an architecture that learns market-agnostic trends and use these to learn superior market-specific trading strategies. Each market-specific model is composed of an encoder-decoder pair. The encoder transforms market-specific data into an abstract latent representation that is processed by a global model shared by all markets, while the decoder learns a market-specific trading strategy based on both local and global information from the market-specific encoder and the global model. QuantNet uses recent advances in transfer and meta-learning, where market-specific parameters are free to specialize on the problem at hand, whilst market-agnostic parameters are driven to capture signals from all markets. By integrating over idiosyncratic market data we can learn general transferable dynamics, avoiding the problem of overfitting to produce strategies with superior returns. We evaluate QuantNet on historical data across 3103 assets in 58 global equity markets. Against the top performing baseline, QuantNet yielded 51% higher Sharpe and 69% Calmar ratios. In addition we show the benefits of our approach over the non-transfer learning variant, with improvements of 15% and 41% in Sharpe and Calmar ratios. Code available in appendix.
Computational Fluid Dynamics (CFD) is a major sub-field of engineering. Corresponding flow simulations are typically characterized by heavy computational resource requirements. Often, very fine and complex meshes are required to resolve physical effects in an appropriate manner. Since all CFD algorithms scale at least linearly with the size of the underlying mesh discretization, finding an optimal mesh is key for computational efficiency. One methodology used to find optimal meshes is goal-oriented adaptive mesh refinement. However, this is typically computationally demanding and only available in a limited number of tools. Within this contribution, we adopt a machine learning approach to identify optimal mesh densities. We generate optimized meshes using classical methodologies and propose to train a convolutional network predicting optimal mesh densities given arbitrary geometries. The proposed concept is validated along 2d wind tunnel simulations with more than 60,000 simulations. Using a training set of 20,000 simulations we achieve accuracies of more than 98.7%. Corresponding predictions of optimal meshes can be used as input for any mesh generation and CFD tool. Thus without complex computations, any CFD engineer can start his predictions from a high quality mesh.
We investigate the trading behavior of Finnish individual investors trading the stocks selected to compute the OMXH25 index in 2003 by tracking the individual daily investment decisions. We verify that the set of investors is a highly heterogeneous system under many aspects. We introduce a correlation based method that is able to detect a hierarchical structure of the trading profiles of heterogeneous individual investors. We verify that the detected hierarchical structure is highly overlapping with the cluster structure obtained with the approach of statistically validated networks when an appropriate threshold of the hierarchical trees is used. We also show that the combination of the correlation based method and of the statistically validated method provides a way to expand the information about the clusters of investors with similar trading profiles in a robust and reliable way.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا