No Arabic abstract
Superconducting quantum circuits are one of the leading quantum computing platforms. To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence. Here, we use terahertz Scanning Near-field Optical Microscopy (SNOM) to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon, one of the most characteristic components of the superconducting quantum processors. Using a recently developed vector calibration technique, we extract the THz permittivity from spectroscopy in proximity to the microwave feedline. Fitting the extracted permittivity to the Drude model, we find that silicon in the etched channel has a carrier concentration greater than buffer oxide etched silicon and we explore post-processing methods to reduce the carrier concentrations. Our results show that near-field THz investigations can be applied to quantitatively evaluate and identify potential loss channels in quantum devices.
Intense electromagnetic evanescent fields are thermally excited in near fields on material surfaces (at distances smaller than the wavelength of peak thermal radiation). The property of the fields is of strong interest for it is material-specific and is important for understanding a variety of surface-related effects, such as friction forces, Casimir forces, near-field heat transfer, and surface-coupled molecular dynamics. On metal surfaces, relevance of surface plasmon polaritons (SPlPs), coupled to collective motion of conduction electrons, has attracted strong interest, but has not been explicitly clarified up to the present time. Here, using a passive terahertz (THz) near-field microscope with unprecedented high sensitivity, we unveil detailed nature of thermally generated evanescent fields (wavelength:lamda0~14.5micron) on metals at room temperature. Our experimental results unambiguously indicate that the thermal waves are short-wavelength fluctuating electromagnetic fields, from which relevance of SPlPs is ruled out.
Near-field optical microscopy by means of infrared photocurrent mapping has rapidly developed in recent years. In this letter we introduce a near-field induced contrast mechanism arising when a conducting surface, exhibiting a magnetic moment, is exposed to a nanoscale heat source. The magneto-caloritronic response of the sample to near-field excitation of a localized thermal gradient leads to a contrast determined by the local state of magnetization. By comparing the measured electric response of a magnetic reference sample with numerical simulations we derive an estimate of the field enhancement and the corresponding temperature profile induced on the sample surface.
We have measured noise in thin-film superconducting coplanar waveguide resonators. This noise appears entirely as phase noise, equivalent to a jitter of the resonance frequency. In contrast, amplitude fluctuations are not observed at the sensitivity of our measurement. The ratio between the noise power in the phase and amplitude directions is large, in excess of 30 dB. These results have important implications for resonant readouts of various devices such as detectors, amplifiers, and qubits. We suggest that the phase noise is due to two-level systems in dielectric materials.
Superconducting coplanar waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations, or suppressing superconductivity entirely. To mitigate these effects we investigate lithographically defined artificial defects in resonators fabricated from NbTiN superconducting films. We show that by controlling the vortex dynamics the quality factor of resonators in perpendicular magnetic fields can be greatly enhanced. Coupled with the restriction of the device geometry to enhance the superconductors critical field, we demonstrate stable resonances that retain quality factors $simeq 10^5$ at the single photon power level in perpendicular magnetic fields up to $B_perp simeq$ 20 mT and parallel magnetic fields up to $B_parallel simeq$ 6 T. We demonstrate the effectiveness of this technique for hybrid systems by integrating an InSb nanowire into a field resilient superconducting resonator, and use it to perform fast charge readout of a gate defined double quantum dot at $B_parallel =$ 1 T.
Semiconductor nanowire field-effect transistors represent a promising platform for the development of room-temperature (RT) terahertz (THz) frequency light detectors due to the strong nonlinearity of their transfer characteristics and their remarkable combination of low noise-equivalent powers (< 1 nW/Hz$^{1/2}$) and high responsivities (> 100 V/W). Nano-engineering a NW photodetector combining high sensitivity with high speed (sub-ns) in the THz regime at RT is highly desirable for many frontier applications in quantum optics and nanophotonics, but this requires a clear understanding of the origin of the photo-response. Conventional electrical and optical measurements, however, cannot unambiguously determine the dominant detection mechanism due to inherent device asymmetry that allows different processes to be simultaneously activated. Here, we innovatively capture snapshots of the photo-response of individual InAs nanowires via high spatial resolution (35 nm) THz photocurrent nanoscopy. By coupling a THz quantum cascade laser to scattering-type scanning near-field optical microscopy (s-SNOM) and monitoring both electrical and optical readouts, we simultaneously measure transport and scattering properties. The spatially resolved electric response provides unambiguous signatures of photo-thermoelectric or bolometric currents whose interplay is discussed as a function of photon density and material doping, therefore providing a route to engineer photo-responses by design.